
D2.1.2	 CloudML	 Implementation	 Documentation	 (First	 version)	 	 Page	 1	 of	 63	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	
	
	
	
	
	

PaaSage	
	
	

Model	 Based	 Cloud	 Platform	 Upperware	
	
	
	
	

Deliverable	 D2.1.2	
	

CloudML	 Implementation	 Documentation	 (First	 version)	
	
	
	

Version:	 1.0	

��� ���

D2.1.2	 CloudML	 Implementation	 Documentation	 (First	 version)	 	 Page	 2	 of	 63	

D2.1.2	
Name,	 title	 and	 organisation	 of	 the	 scientific	 representative	 of	 the	 project's	 coordinator:	 	
Mr	 Tom	 Williamson	 	 	 Tel:	 +33	 4	 9238	 5072	 	 	 Fax:	 +33	 4	 92385011	 	 	 E-‐mail:	 tom.williamson@ercim.eu	
Project	 website	 address:	 http://www.paasage.eu	

Project

Grant Agreement number 317715

Project acronym: PaaSage

Project title: Model Based Cloud Platform Upperware

Funding Scheme: Integrated Project

Date of latest version of Annex I against which the
assessment will be made:

30th September 2013

Document

Period covered:

Deliverable number: D2.1.2

Deliverable title CloudML Implementation Documentation (First version)

Contractual Date of Delivery: 301h March 2014 (M18)

Actual Date of Delivery: 30th April 2014

Editor (s): Alessandro Rossini

Author (s): Alessandro Rossini, Nikolay Nikolov, Daniel Romero,
Jörg Domaschka, Kiriakos Kritikos, Tom Kirkham, Arnor
Solberg

Reviewer (s): Maciej Malawski, Stefan Spahr

Participant(s):

Work package no.: 2

Work package title: Languages

Work package leader: Arnor Solberg

Distribution:

Version/Revision: 1.0

Draft/Final: Final

Total number of pages (including cover): 63

D2.1.2	 CloudML	 Implementation	 Documentation	 (First	 version)	 	 Page	 3	 of	 63	

DISCLAIMER	
	

This	 document	 contains	 description	 of	 the	 PaaSage	 project	 work	 and	 findings.	

The	 authors	 of	 this	 document	 have	 taken	 any	 available	 measure	 in	 order	 for	 its	 content	 to	 be	 accurate,	 consistent	 and	
lawful.	 However,	 neither	 the	 project	 consortium	 as	 a	 whole	 nor	 the	 individual	 partners	 that	 implicitly	 or	 explicitly	
participated	 in	 the	 creation	 and	 publication	 of	 this	 document	 hold	 any	 responsibility	 for	 actions	 that	 might	 occur	 as	 a	
result	 of	 using	 its	 content.	

This	 publication	 has	 been	 produced	 with	 the	 assistance	 of	 the	 European	 Union.	 The	 content	 of	 this	 publication	 is	 the	
sole	 responsibility	 of	 the	 PaaSage	 consortium	 and	 can	 in	 no	 way	 be	 taken	 to	 reflect	 the	 views	 of	 the	 European	 Union.	

	

The	 European	 Union	 is	 established	 in	 accordance	 with	 the	
Treaty	 on	 European	 Union	 (Maastricht).	 There	 are	 currently	
28	 Member	 States	 of	 the	 Union.	 It	 is	 based	 on	 the	 European	
Communities	 and	 the	 member	 states	 cooperation	 in	 the	
fields	 of	 Common	 Foreign	 and	 Security	 Policy	 and	 Justice	
and	 Home	 Affairs.	 The	 five	 main	 institutions	 of	 the	
European	 Union	 are	 the	 European	 Parliament,	 the	 Council	
of	 Ministers,	 the	 European	 Commission,	 the	 Court	 of	 Justice	
and	 the	 Court	 of	 Auditors.	 (http://europa.eu)	

	

	
PaaSage	 is	 a	 project	 funded	 in	 part	 by	 the	 European	 Union.	

Contents
1 Introduction . 7
2 CAMEL . 8

2.1 EMF . 8
2.2 CDO . 9

3 CLOUDML . 12
3.1 Components . 16
3.2 Communications . 18
3.3 Containments . 18
3.4 Component, Communication, and Containment instances 19

4 Saloon . 20
4.1 Feature . 21
4.2 Ontology . 24
4.3 Mapping . 26
4.4 Type . 27

5 WS-Agreement . 28
5.1 Agreements . 28

6 Scalability Rules Language . 30
6.1 Events . 32
6.2 Scheduling and Conditions 33
6.3 Patterns and Metrics 34
6.4 Actions . 36
6.5 Examples . 37

7 Java APIs and CDO . 40
8 Metadata Database . 45
9 Related Work . 45
10 Conclusions and Future Work 46
References . 47

A XMI Serialisation of the SENSAPP Example 51

B Cloud Ontology Diagram 54

C Full Java Code of the SENSAPP Example 55

D2.1.2 CloudML Implementation Documentation (First version) Page 4 of 63

Executive Summary
Cloud computing provides a ubiquitous networked access to a shared and vir-
tualised pool of computing capabilities that can be provisioned with minimal
management effort. Cloud-based applications are applications that are deployed
on cloud infrastructures and platforms, and delivered as services. PaaSage aims
to facilitate the specification and execution of cloud-based applications by lever-
aging upon model-driven engineering (MDE) techniques and methods, and by
exploiting multiple cloud infrastructures and platforms.

MDE is a branch of software engineering that aims at improving the pro-
ductivity, quality, and cost-effectiveness of software development by shifting the
paradigm from code-centric to model-centric. Models enable the abstraction
from the implementation details of heterogeneous cloud services, while model
transformations facilitate the automatic generation of the source code that ex-
ploits these services. This approach, which is commonly summarised as “model
once, generate anywhere”, is particularly relevant when it comes to the specifica-
tion and execution of multi-cloud applications (i.e., applications deployed across
multiple cloud infrastructures and platforms), which allow exploiting the peculi-
arities of each cloud service and hence optimising performance, availability, and
cost of the applications.

Models are frequently specified using domain-specific languages (DSLs),
which are tailored to a specific domain of concern. In order to cover the neces-
sary aspects of the specification and execution of multi-cloud applications, PaaS-
age encompasses a family of DSLs called Cloud Application Modelling and Ex-
ecution Language (CAMEL). These DSLs, namely Cloud Modelling Language
(CLOUDML), Saloon, WS-Agreement, and Scalability Rules Language (SRL),
provide support for modelling multiple concerns of multi-cloud applications,
such as provisioning, deployment, requirements, goals, SLAs, and execution.

In this deliverable, we provide the initial version of the technical document-
ation of the DSLs adopted in PaaSage. In particular, we describe the modelling
concepts, their attributes and their relationships, as well as the rules for com-
bining these concepts to specify valid models. Moreover, we exemplify how to
specify models through a tree-based editor as well as how to programmatically
manipulate and persist them through Java APIs.

Please note that these DSLs are under development and will evolve through-
out the course of the PaaSage project. Hence, the capabilities offered by these
DSLs and presented in this deliverable reflect our understanding of the require-
ments of PaaSage at month 18. The final version of the technical documentation
of the DSLs adopted in PaaSage will be provided in D2.1.3 [23] at month 36.

D2.1.2 CloudML Implementation Documentation (First version) Page 5 of 63

Intended Audience
This deliverable is a public document intended for readers with some experience
in cloud computing and software engineering, and some familiarity with the ini-
tial architecture design (cf. D1.6.1 [11]) as well as the DSLs adopted in PaaSage
(cf. D2.1.1 [25]).

For the external reader, this deliverable provides the technical documentation
that will facilitate adopting the DSLs outside the PaaSage platform.

For the research and industrial partners in PaaSage, this deliverable provides
the technical documentation that will facilitate integrating the DSLs with the
components of the PaaSage platform.

D2.1.2 CloudML Implementation Documentation (First version) Page 6 of 63

1 Introduction
MDE is a branch of software engineering that aims at improving the productivity,
quality, and cost-effectiveness of software development by shifting the paradigm
from code-centric to model-centric. MDE promotes the use of models and model
transformations as the primary assets in software development, where they are
used to specify, simulate, generate, and manage software systems. This approach
is particularly relevant when it comes to the specification and execution of multi-
cloud applications (i.e., applications deployed across multiple private, public, or
hybrid cloud infrastructures and platforms), which allow for exploiting the pe-
culiarities of each cloud service and hence optimising performance, availability,
and cost of the applications.

Models can be specified using general-purpose languages like the Unified
Modeling Language (UML). However, to fully unfold the potential of MDE,
models are frequently specified using domain-specific languages (DSLs), which
are tailored to a specific domain of concern. In order to cover the necessary
aspects of the specification and execution of multi-cloud applications, PaaSage
encompasses a family of DSLs called Cloud Application Modelling and Execu-
tion Language (CAMEL). This family includes the Cloud Modelling Language
(CLOUDML) [8, 9], for modelling and enacting the provisioning and deploy-
ment of multi-cloud applications; Saloon [21, 20, 19], for specifying require-
ments and goals of multi-cloud applications; WS-Agreement [1], for modelling
SLAs of web services; and Scalability Rules Language (SRL), for specifying
scalability rules.

The abstract syntax of a language describes the set of concepts, their attrib-
utes, and their relationships, as well as the rules for combining these concepts to
specify valid statements that conform to this abstract syntax. The concrete syn-
tax of a language describes the textual or graphical notation that renders these
concepts, their attributes, and their relationships.

In MDE, the abstract syntax of a DSL is typically defined by its metamodel.
That is, a metamodel describes the set of modelling concepts, their attributes,
and their relationships, as well as the rules for combining these concepts to spe-
cify valid models that conform to the metamodel [16]. Moreover, in MDE, the
concrete syntax may vary depending on the domain, e.g., a DSL could provide a
textual notation based on JavaScript Object Notation (JSON) as well as a graph-
ical notation based on trees or graphs along with the corresponding serialisation
in XML Metadata Interchange (XMI).

In this deliverable, we focus on the abstract syntax of the DSLs adopted in
PaaSage and describe their metamodels. Moreover, we exemplify how to specify
models using a tree-based editor as well as how to programmatically manipulate
and persist them through Java APIs.

D2.1.2 CloudML Implementation Documentation (First version) Page 7 of 63

Structure of the document

The remainder of the document is organised as follows. Section 2 presents
some technologies facilitating the integration of the DSLs adopted in PaaS-
age. Sections 3, 4, 5, and 6 present the metamodels of CLOUDML, Saloon,
WS-Agreement, and SRL, respectively, along with corresponding sample mod-
els. Section 7 exemplifies the usage of Java APIs to programmatically manip-
ulate and persist models. Section 8 summarises the approach used to map the
metamodels of the DSLs to the Metadata Database schema. Finally, Section 9
compares the proposed approach with related work, while Section 10 draws
some conclusions and outlines some plans for future work.

2 CAMEL
CAMEL is a family of DSLs to specify models in all life-cycle phases of config-
uration, deployment, and execution of multi-cloud applications in PaaSage (cf.
D2.1.1 [25]). In order to achieve the integration of these DSLs, we adopt the
Eclipse Modelling Framework (EMF)1 on top of the Connected Data Objects
(CDO)2 persistence solution. In this section, we outline EMF and CDO and
discuss how they facilitate the integration between the DSLs.

2.1 EMF
EMF is a modelling framework that facilitates defining DSLs. EMF provides
the Ecore metamodel, which is the core metamodel of EMF allowing for the
specification of Ecore models. The metamodels of the DSLs adopted in PaaSage
are Ecore models that conform to the Ecore metamodel (see Figure 1). The
Ecore metamodel, in turn, is an Ecore model that conforms to itself (i.e., it is
reflexive).

EMF allows generating Java class hierarchy representations of the metamod-
els based on those definitions. The Java representations provide a set of APIs that
enables the programmatic manipulation of models.

1https://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/cdo/

D2.1.2 CloudML Implementation Documentation (First version) Page 8 of 63

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/cdo/

DSL	

Model	

DSL	
metamodel	

Ecore	
metamodel	 Ecore	

conforms to

conforms to

metamodel of

metamodel of

conforms to

Figure 1: The Ecore-based modelling stack in PaaSage

EMF also provides code generation facilities that can be used to automatic-
ally generate a tree-based editor, as well as frameworks such as Graphical Mod-
eling Framework (GMF)3 or Graphical Editing Framework (GEF)4 to manually
create a custom graphical editor. Please note that, at month 18, the editor func-
tionality of the PaaSage modelling environment is provided by the automatically
generated tree-based editor. In this deliverable, this editor is used to illustrate
the specification of several sample models.

2.2 CDO
CDO provides a semi-automated persistence mechanism which is adapted to
work natively with Ecore models and their instances. It can be used as a model
repository where clients persist and distribute their models. Its features can be
used to satisfy the design-time and run-time requirements of the PaaSage plat-
form. Such features include providing automated and optimised persistence with
pluggable back-ends, query languages, Java interfaces, automatic notifications,
and failover mechanisms.

Figure 2 shows the general server architecture of CDO. This architecture is
made up of a physical integration layer and a logical layer. This separation
of concerns allows for a high degree of flexibility when adopting a persistence
strategy for the DSLs.

3https://www.eclipse.org/modeling/gmp/
4https://www.eclipse.org/gef/

D2.1.2 CloudML Implementation Documentation (First version) Page 9 of 63

https://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/gef/

Repository	

Store	

Database	

Logical layer

Physical integration
layer

Acceptors
e.g., TCP, encrypted SSL, etc.

DB (default – JDBC)
Hibernate
In-memory
…

Figure 2: Overview of the CDO architecture

Physical integration layer

The physical integration layer of CDO consists of so-called stores, which are
associated with different database back-ends. The DB store can be associated
with any database management system that implements the JDBC API. This
store provides an internal object-relational (O-R) mapping that is used for seri-
alising/deserialising models to/from the database. The internal mapping can
be customised by either selecting one of the provided mapping strategies (ho-
rizontal mapping strategy: one table per concrete class, no joins, etc.) or by
defining annotations on model elements in EMF.

The Hibernate5 store uses object-relational mapping metadata for serialising
model instances to database tuples and vice versa. This metadata can be defined
by use of either the Java Persistence API6 specification (writing annotations dir-
ectly within the Java objects or defining them in separate mapping files) or the
proprietary Hibernate format (hbm.xml mapping files). Hibernate also supports
a variety of database management system back-ends including the ones men-
tioned for the DB store. This store also provides an internal automatic mapping
generation using the Teneo7 model-relational mapping framework.

5http://hibernate.org/
6https://www.eclipse.org/eclipselink/jpa.php
7http://wiki.eclipse.org/Teneo

D2.1.2 CloudML Implementation Documentation (First version) Page 10 of 63

http://hibernate.org/
https://www.eclipse.org/eclipselink/jpa.php
http://wiki.eclipse.org/Teneo

Logical layer

The logical layer of CDO represents an abstraction over the underlying stores
and provides several types of Java APIs designed to access them. The func-
tional APIs can be used with all store types. They provide a means to program-
matically access models persisted in the repository through a set of function
calls. Additionally, CDO provides query language interfaces that can also be
used for accessing the underlying stores. They are used by passing query strings
within a certain function call. The particular query languages currently suppor-
ted by CDO are Structured Query Language (SQL), Object Constraint Language
(OCL), and Hibernate Query Language (HQL). Please note that the latter is only
usable with Hibernate stores.

Features beneficial for the PaaSage platform

CDO provides several features that will facilitate the implementation of the
PaaSage platform:

• Transactional Support: CDO supports transactions on the models persisted
in the repository. The transactional APIs are designed after the JDBC
APIs, whereas each client of the repository first opens a session to start a
transaction that can be used to manipulate the model.

• Model Validation: CDO checks that models committed to the repository
conform to their metamodel. This ensures that the models persisted in the
repository are consistent and valid at any time.

• Model Versioning: CDO supports optimistic versioning [24], where each
client of the repository has a local (or working) copy of a model. These
local copies are modified independently and in parallel and, as needed,
local modifications can be committed to the repository. In this respect,
CDO facilitates conflict detection: if the modifications are non-overlapping,
they are automatically merged; otherwise, they are rejected, and the model
is put in a conflict state that requires manual intervention.

• Automatic Propagation of Events: CDO allows for clients to receive auto-
matic notifications about the state of the models persisted in the repository.
This includes the possibility of consistent propagation of modifications
across all clients of the repository.

• Metamodel Branching: By default, all clients of the repository work on the
same version of the metamodel. However, each client of the repository can
be configured to create and work on different branches of the metamodel.

D2.1.2 CloudML Implementation Documentation (First version) Page 11 of 63

• Auditing: CDO keeps a record of versions of each model since its creation.
This allows for clients of the repository to have access to the history of
each model for auditing purposes.

• Role-based Security: CDO provides a built-in access control designed
for Ecore models. This allows for a fine-grained role-based access rights
definition.

3 CLOUDML
PaaSage uses provisioning and deployment models in all life-cycle phases of
configuration, deployment, and execution (cf. D2.1.1 [25]), meaning that they
are progressively refined throughout the PaaSage work-flow. For this purpose,
we have developed CLOUDML8 [8, 9], which consists of a tool-supported DSL
for modelling and enacting the provisioning and deployment of multi-cloud ap-
plications, as well as for facilitating their dynamic adaptation, by leveraging
upon MDE techniques and methods.

CLOUDML has been designed based on the following requirements:

Cloud provider-independence (R1): CLOUDML should support a cloud pro-
vider-agnostic specification of the provisioning and deployment. This will
simplify the design of multi-cloud applications and prevent vendor lock-
in.

Separation of concerns (R2): CLOUDML should support a modular, loosely-
coupled specification of the provisioning and deployment so that the mod-
ules can be seamlessly substituted. This will facilitate the maintenance as
well as the dynamic adaptation of the deployment topology.

Reusability (R3): CLOUDML should support the specification of types or pat-
terns that can be seamlessly reused to design the system. This will ease
the evolution as well as the rapid development of different variants of a
system in time and in space.

Abstraction (R4): CLOUDML should provide an up-to-date, abstract repres-
entation of the running system. This will facilitate the reasoning, simula-
tion and validation of the adaptation actions before their actual enactments.

White- and black-box infrastructure (R5): CLOUDML should support both
IaaS and PaaS solutions. This will enable various degrees of control over
underlying infrastructures and platforms of a multi-cloud application.

8http://cloumdml.org

D2.1.2 CloudML Implementation Documentation (First version) Page 12 of 63

http://cloumdml.org

CLOUDML is inspired by the OMG Model-Driven Architecture [17] and al-
lows developers to model the provisioning and deployment of a multi-cloud ap-
plication at two levels of abstraction: (i) the Cloud Provider-Independent Model
(CPIM), which specifies the provisioning and deployment of a multi-cloud ap-
plication in a cloud provider-agnostic way (addressing the requirement R1); (ii)
the Cloud Provider-Specific Model (CPSM), which refines the CPIM and spe-
cifies the provisioning and deployment of a multi-cloud application in a cloud
provider-specific way. This two-level approach is agnostic to any development
paradigm and technology, meaning that the application developers can design
and implement their applications based on their preferred paradigms and tech-
nologies.

CLOUDML is also inspired by component-based approaches [31], which fa-
cilitate separation of concerns (R2) and reusability (R3). In this respect, deploy-
ment models can be regarded as assemblies of components exposing ports, and
bindings between these ports.

To this end, CLOUDML implements the type-instance pattern [2], which also
facilitates reusability (R3) and abstraction (R4). This pattern exploits two fla-
vours of typing, namely ontological and linguistic [15]. Figure 3 illustrates these
two flavours of typing. SL (short for Small GNU/Linux) represents a reusable
type of virtual machine. It is linguistically typed by the class VM (short for
Virtual Machine). SL1 represents an instance of the virtual machine SL. It is
ontologically typed by SL and linguistically typed by VMInstance.

VM	 VMInstance	

SL	 SL1	

linguistic
typing

ontological
typing

Metamodel

Model

Figure 3: Linguistic and ontological typing

In the following, we provide a description of the most important classes and
corresponding properties in the CLOUDML metamodel as well as sample mod-
els conforming to this metamodel. These sample models are analogous to the
sample models in the SENSAPP running example from D2.1.1 [25].

Figure 4 shows the type portion of the CLOUDML metamodel, and Figure 5
shows the hierarchy of classes of the complete CLOUDML metamodel.

D2.1.2 CloudML Implementation Documentation (First version) Page 13 of 63

Cl
ou

dM
LM

od
el

VM
m

in
Ra

m
h:h

EI
nt

m
ax

Ra
m

h:h
EI

nt
m

in
Co

re
sh

:hE
In

t
m

ax
Co

re
sh

:hE
In

t
m

in
St

or
ag

eh
:hE

In
t

m
ax

St
or

ag
eh

:hE
In

t
os

h:h
ES

tr
in

g
is

64
os

h:h
EB

oo
le

an
im

ag
eI

dh
:hE

St
rin

g
se

cu
rit

yG
ro

up
h:h

ES
tr

in
g

ss
hK

ey
h:h

ES
tr

in
g

pr
iv

at
eK

ey
h:h

ES
tr

in
g

gr
ou

pN
am

eh
:hE

St
rin

g

Pr
ov

id
er

cr
ed

en
tia

ls
h:h

ES
tr

in
g

C
o
m
p
o
n
e
n
t

In
te

rn
al

Co
m

po
ne

nt

C
o
m
m
u
n
ic
a
ti
o
n
P
o
rt

is
Lo

ca
lh:

hE
Bo

ol
ea

n
po

rt
N

um
be

rh:
hE

In
t

Re
qu

ire
dC

om
m

un
ic

at
io

nP
or

t
is

M
an

da
to

ry
h:h

EB
oo

le
an

Pr
ov

id
ed

Co
m

m
un

ic
at

io
nP

or
t

Co
m

m
un

ic
at

io
n

Cl
ou

d

Ex
te

rn
al

Co
m

po
ne

nt
lo

ca
tio

nh
:hE

St
rin

g

C
o
n
ta
in
m
e
n
tP
o
rt

Pr
ov

id
ed

Co
nt

ai
nm

en
tP

or
t

Re
qu

ire
dC

on
ta

in
m

en
tP

or
t Co

nt
ai

nm
en

t pr
ov

id
er

s
0.

.1

co
m

po
ne

nt
s

0.
.1

co
m

m
un

ic
at

io
ns

0.
.1

cl
ou

ds
0.

.1

co
nt

ai
nm

en
ts

0.
.1

pr
ov

id
ed

Co
m

m
un

ic
at

io
nP

or
ts

0.
.1

pr
ov

id
ed

Co
nt

ai
nm

en
tP

or
ts

0.
.1

re
qu

ire
dC

om
m

un
ic

at
io

nP
or

ts
0.

.1 co
m

po
si

te
In

te
rn

al
Co

m
po

ne
nt

s
0.

.1

re
qu

ire
dC

on
ta

in
m

en
tP

or
t

1

co
m

po
ne

nt
1

re
qu

ire
dC

om
m

un
ic

at
io

nP
or

t
1

pr
ov

id
ed

Co
m

m
un

ic
at

io
nP

or
t

1

ex
te

rn
al

Co
m

po
ne

nt
s

0.
.1

ho
st

0.
.1

pr
ov

id
er

0.
.1

ow
ne

r
1

pr
ov

id
ed

Co
nt

ai
nm

en
tP

or
t

1
re

qu
ire

dC
on

ta
in

m
en

tP
or

t
1

Figure 4: Type part of the CLOUDML metamodel

D2.1.2 CloudML Implementation Documentation (First version) Page 14 of 63

N
a
m
e
d
E
le
m
e
n
t

na
m

e6
:6E

St
rin

g
Pr

op
er

ty
va

lu
e6

:6E
St

rin
g

C
lo
u
d
M
LE
le
m
e
n
t

Re
so

ur
ce

do
w

nl
oa

dC
om

m
an

d6
:6E

St
rin

g
up

lo
ad

Co
m

m
an

d6
:6E

St
rin

g
in

st
al

lC
om

m
an

d6
:6E

St
rin

g
co

nf
ig

ur
eC

om
m

an
d6

:6E
St

rin
g

st
ar

tC
om

m
an

d6
:6E

St
rin

g
st

op
Co

m
m

an
d6

:6E
St

rin
g

Cl
ou

dM
LM

od
el VM

m
in

Ra
m

6:6
EI

nt
m

ax
Ra

m
6:6

EI
nt

m
in

Co
re

s6
:6E

In
t

m
ax

Co
re

s6
:6E

In
t

m
in

St
or

ag
e6

:6E
In

t
m

ax
St

or
ag

e6
:6E

In
t

os
6:6

ES
tr

in
g

is
64

os
6:6

EB
oo

le
an

im
ag

eI
d6

:6E
St

rin
g

se
cu

rit
yG

ro
up

6:6
ES

tr
in

g
ss

hK
ey

6:6
ES

tr
in

g
pr

iv
at

eK
ey

6:6
ES

tr
in

g
gr

ou
pN

am
e6

:6E
St

rin
g

Pr
ov

id
er

cr
ed

en
tia

ls
6:6

ES
tr

in
g

C
o
m
p
o
n
en
t

In
te

rn
al

Co
m

po
ne

nt

C
o
m
m
u
n
ic
a
ti
o
n
P
o
rt

is
Lo

ca
l6:

6E
Bo

ol
ea

n
po

rt
N

um
be

r6:
6E

In
t

Re
qu

ire
dC

om
m

un
ic

at
io

nP
or

t
is

M
an

da
to

ry
6:6

EB
oo

le
an

Pr
ov

id
ed

Co
m

m
un

ic
at

io
nP

or
t

Co
m

m
un

ic
at

io
n

Cl
ou

d

VM
In

st
an

ce
pu

bl
ic

Ad
dr

es
s6

:6E
St

rin
g

C
o
m
p
o
n
en
tI
n
st
a
n
ce

In
te

rn
al

Co
m

po
ne

nt
In

st
an

ce

Co
m

m
un

ic
at

io
nP

or
tIn

st
an

ce

Re
qu

ire
dC

om
m

un
ic

at
io

nP
or

tIn
st

an
ce

Pr
ov

id
ed

Co
m

m
un

ic
at

io
nP

or
tIn

st
an

ce

Co
m

m
un

ic
at

io
nI

ns
ta

nc
e

Ex
te

rn
al

Co
m

po
ne

nt
lo

ca
tio

n6
:6E

St
rin

g

Ex
te

rn
al

Co
m

po
ne

nt
In

st
an

ce
ip

s6
:6E

St
rin

g

C
o
n
ta
in
m
en
tP
o
rt

C
o
n
ta
in
m
en
tP
o
rt
In
st
a
n
ce

Pr
ov

id
ed

Co
nt

ai
nm

en
tP

or
t

Pr
ov

id
ed

Co
nt

ai
nm

en
tP

or
tIn

st
an

ce

Re
qu

ire
dC

on
ta

in
m

en
tP

or
t

Re
qu

ire
dC

on
ta

in
m

en
tP

or
tIn

st
an

ce

Co
nt

ai
nm

en
tIn

st
an

ce

Co
nt

ai
nm

en
t

Figure 5: Class inheritance hierarchy of the CLOUDML metamodel

D2.1.2 CloudML Implementation Documentation (First version) Page 15 of 63

A CloudMLModel consists of CloudMLElements which can be associated
with Property and Resources. A Resource represents an artefact (e.g., scripts,
binaries, configuration files, etc.) adopted to manage the deployment life-cycle
(e.g., download, configure, install, and start, stop). The three main types of
CloudMLElements are Component, Communication, and Containment.

3.1 Components
A Component represents a reusable type of component of a cloud-based ap-
plication. A Component can be an ExternalComponent, meaning that it is
managed by an external Provider (e.g., an Amazon Beanstalk container, see Fig-
ure 6), or an InternalComponent, meaning that it is managed by the PaaSage
platform (e.g., a Servlet container or SENSAPP, see Figure 7). This mechanism
enables supporting both IaaS and PaaS solutions (R5). The property location
of ExternalComponent represents the geographical location of the data centre
hosting (e.g., location="eu", short for Europe).

An ExternalComponent can be a VM (e.g., a virtual machine running GNU/-
Linux, see Figure 8). The properties minCores, maxCores, minRam, max-
Ram, minStorage, and maxStorage depict the lower and upper bounds of
virtual compute cores, RAM, and storage, respectively, of the required virtual
machine (e.g., minCores=1, minRam=1024). The property OS represents the
operating system to be run by the virtual machine (e.g., OS="ubuntu").

Example

Figure 6, 7, and 8 show excerpts of an ExternalComponent, an InternalCom-
ponent, and a VM, respectively, specified using an EMF tree-based editor (see
Section 2).

Figure 6: A sample ExternalComponent

D2.1.2 CloudML Implementation Documentation (First version) Page 16 of 63

Figure 7: A sample InternalComponent

Figure 8: A sample VM

D2.1.2 CloudML Implementation Documentation (First version) Page 17 of 63

3.2 Communications
A CommunicationPort represents a communication interface of a compon-
ent. A CommunicationPort can be a ProvidedCommunicationPort, mean-
ing that it provides a feature to another component (e.g., SENSAPP provides
a REST interface), or a RequiredCommunicationPort, meaning that it con-
sumes a feature from another component (e.g., SENSAPP ADMIN requires a
SENSAPP REST interface). Only internal components can have a Required-
CommunicationPort since they are managed by the PaaSage platform. The
property isLocal represents that the component requesting the feature and the
component providing the feature have to be deployed on the same external com-
ponent (e.g., SENSAPP and MongoDB have to be deployed on the same virtual
machine, see Figure 7). The property isMandatory of RequiredPort represents
that the InternalComponent depends on this feature (e.g., SENSAPP depends
on MongoDB and hence MongoDB has to be deployed before SENSAPP, see
Figure 7).

A Communication represents a reusable type of communication binding
between a Required- and a ProvidedCommunicationPort (e.g., SENSAPP com-
municates with the SENSAPP ADMIN through HTTP on port 80, see Figure 9).
A Communication can be associated with Resources specifying how to con-
figure the components so that they can communicate with each other.

Example

Figure 9 shows an excerpt of a Communication specified using an EMF tree-
based editor (see Section 2).

Figure 9: A sample Communication

3.3 Containments
A ContainmentPort represents a containment interface of a component. A
ContainmentPort can be a ProvidedContainmentPort, meaning that it provides
an execution environment to another component (e.g., a virtual machine running

D2.1.2 CloudML Implementation Documentation (First version) Page 18 of 63

GNU/Linux provides an execution environment to a Servlet container), or a Re-
quiredContainmentPort, meaning that an internal component consumes an ex-
ecution environment from another component (e.g., SENSAPP requires a Servlet
container, see Figure 7).

A Containment represents a reusable type of containment binding between
Required- and a ProvidedContainmentPort (e.g., a Servlet container is con-
tained by a virtual machine running GNU/Linux, see Figure 10). A Contain-
ment can be associated with Resources specifying how to configure the com-
ponents so that the contained component can be deployed on the container com-
ponent.

Example

Figure 10 shows an excerpt of a Containment specified using an EMF tree-
based editor (see Section 2).

Figure 10: A sample Containment

3.4 Component, Communication, and Containment
instances

The types presented above can be instantiated in order to form an assembly of
components that specifies a provisioning and deployment model.

Example

Figure 11 shows an instantiation of the sample VM type running GNU/Linux
presented above (see Figure 8). Please note that when instantiating a composite
type (e.g., the sl1 VMInstance of SL VM type), all of its dependent types also
have to be instantiated along with it (e.g., the slProvided1 ContainmentPortIn-
stance of slProvided ContainmentPort type).

The complete serialisation of the SENSAPP example in XMI format specified
using the EMF tree-based editor, is available in Appendix A.

D2.1.2 CloudML Implementation Documentation (First version) Page 19 of 63

Figure 11: A sample VMInstance

4 Saloon
PaaSage uses profiles of cloud providers in the life-cycle phase of configuration
and deployment for matching the provisioning and deployment models with the
compatible cloud providers (cf. D2.1.1 [25]). For this purpose, we have adapted
and extended Saloon [21, 20, 19], which consists of a language and a frame-
work for specifying application requirements and user goals of multi-cloud ap-
plications and selecting compatible cloud providers by leveraging upon feature
models [3] and ontologies [10].

Saloon uses four metamodels: Feature Metamodel, Ontology Metamodel,
Mapping Metamodel, and Type Metamodel. Figure 12 illustrates the relation-
ships between these metamodels.

Feature
Metamodel

Mapping
Metamodel

Type Metamodel

Ontology
Metamodel

Figure 12: Saloon Metamodels overview

The Feature Metamodel enables the specification of feature models (FMs)
characterising cloud providers. The Ontology Metamodel enables the definition
of a cloud ontology that encompasses different concepts from cloud providers,
application requirements, and user goals. The Mapping Metamodel defines the
relationships between the FMs and the cloud ontology, allowing the matching
of cloud providers with application requirements and user goals. Finally, the
Type Metamodel defines basic types required by the other metamodels, such as
string, integer, and float. In the following, we provide a description of the most
important classes and corresponding properties in these metamodels as well as
sample models conforming to these metamodels.

D2.1.2 CloudML Implementation Documentation (First version) Page 20 of 63

4.1 Feature
Figure 13 shows the Saloon Feature Metamodel.

-min: Int
-max: Int
-value: Int

Cardinality

Constraint

Ffrom

Fto

Implies Excludes

Group
Cardinality

Feature
Cardinality

0..1

0..1

Requires

FeatureModel

Alternative

Feature
-name: String
-root: boolean

2..*

0..*

Functional
-type: Operator
-value: Int

variants

Exclusive

0..*

subFeatures

<<enumeration>>
Operator

-add
-remove
-multiply
-divide

Scope

Product
Instance

-feat: Feature

to

from 0..1

0..1

from to

-name:string
Attribute

root

<<abstract>>
Value

value

0..*

constraints

attributeConstraints

fromValue

Attribute
Constraint

toValue

Type Metamodel

Legend

Feature Metamodel

Figure 13: Saloon Feature Metamodel

A FeatureModel has a root Feature and a set of Constraints. A Feature
has a Feature Cardinality. The properties min and max represent the lower and
upper bound of the cardinality, respectively, while the property value represents
a value in this range. A Feature can also have subfeatures and be specialised to
Alternative, meaning that at least one feature in the group should be selected, or
Exclusive, meaning that exactly one feature should be selected. In the Saloon
Feature Metamodel, Alternatives can also have a different Group Cardinality
with arbitrary lower and upper bounds (e.g., if the Alternative consists of a group
of five choices, the Group Cardinality of 3..5 denotes that at least three features
in the group have to be selected).

A Constraint represents a typical restriction in binary feature models [12].
A Constraint can be an Implies constraint, meaning that a given feature re-
quires another feature when selected (i.e., both features have to be together in
a valid configuration), or an Excludes constraint, meaning that one feature ex-
cludes another one when selected (i.e., both features can not be together in a
valid configuration). A Constraint can also be a Requires constraint, enabling
the specification of restrictions of the form:

D2.1.2 CloudML Implementation Documentation (First version) Page 21 of 63

[x′, x′′]A→ [y′, y′′]B with x′, x′′, y′, y′′ ∈ N, and x′ ≤ x′′, y′ ≤ y′′

This restriction denotes that if cardinality of feature A is between x′ and x′′,
the cardinality of feature B must be in [y′, y′′]. A Requires constraint can be
specialised to a Functional constraint, enabling the specification of restrictions
of the form:

[x′, x′′]A→ +[y]B with x′, x′′, y ∈ N, and x′ ≤ x′′

This constraint denotes that a feature A with cardinality between [x′, x′′] re-
quires y more instances of feature B in a valid configuration. A Requires con-
straint can also be specialised to a Attribute Constraint, enabling the specifica-
tion of restrictions of the form:

(A).c = X → (B).d = Y

This constraint denotes that if the attribute c of A has X as value, then the
attribute d of B needs Y as value.

Example

Figure 14 shows an excerpt of the FM for Amazon EC29 specified using an EMF
tree-based editor (see Section 2), while Figure 15 depicts the same model using
the FODA notation [12].

In Figure 15, Amazon EC2 represents the root feature having attributes de-
ploymentModel and serviceModel. The Virtual Machine feature is mandat-
ory since its cardinality is 1..*. This feature has attributes vmMemorySize,
vmSize, vmOS, vmCpuCores and vmStorage. Each attribute has a corres-
ponding domain (e.g., the vmOS attribute has an enumeration as domain with
values Ubuntu, WindowsServer and RedHatEntrepriseLinux).

The Location and Pricing Model features are also mandatory, while the
Services feature is optional (cf. Figure 15).

The FM for Amazon EC2 also includes some Attribute Constraints, e.g.:

(Virtual Machine).vmSize= M→ (Virtual Machine).vmCpuCores=1

This constraint denotes that a value M for the attribute vmSize requires a
value 1 for the attribute vmCpuCores.

9http://aws.amazon.com/ec2/

D2.1.2 CloudML Implementation Documentation (First version) Page 22 of 63

http://aws.amazon.com/ec2/

...

Feature
Metamodel

conforms to

Figure 14: Amazon EC2 Feature Model (Excerpt)

Amazon
EC2

Virtual
Machine

[1..*]

...

Legend

mandatory

optional

Feature

or

alternative (xor)

Dependencies
(Virtual Machine).vmSize= S → (Virtual Machine).vmCpuCores=1
(Virtual Machine).vmSize= S → (Virtual Machine).vmMemorySize=2
(Virtual Machine).vmSize= S → (Virtual Machine).vmStorage=160
(Virtual Machine).vmSize= M → (Virtual Machine).vmCpuCores=1
(Virtual Machine).vmSize= M → (Virtual Machine).vmMemorySize=4
(Virtual Machine).vmSize= M → (Virtual Machine).vmStorage=410
(Virtual Machine).vmSize= L → (Virtual Machine).vmCpuCores=2
(Virtual Machine).vmSize= L → (Virtual Machine).vmMemorySize=8
(Virtual Machine).vmSize= L → (Virtual Machine).vmStorage=840
(Virtual Machine).vmSize= XL → (Virtual Machine).vmCpuCores=4
(Virtual Machine).vmSize= XL → (Virtual Machine).vmMemorySize=15
(Virtual Machine).vmSize= XL → (Virtual Machine).vmStorage=1680
...

Name: serviceModel
Type: string
Value: IaaS

Name: vmOS
Type: int
DomainType: enumerate
Domain: {Ubuntu, Windows Server, Red Hat Enterprise
Linux...}

Name: vmSize
Type: int
DomainType: enumerate
Domain: {S, M, L, XL}

Name: vmMemorySize (GB)
Type: int
DomainType:list
Domain: {2,4,8,15}

Name: deploymentModel
Type: string
Value: Public

Location
Name: vmCpuCores
Type: int
DomainType:list
Domain: {1,2,4, 8,16,32}

Name: vmStorage (GB)
Type: int
DomainType:list
Value: {80,160,410...}

attribute

Pricing
Model

EU US
East

Per
Hour

...

Services

[0..5]

VPN
Connection

Amazon
VPC

Figure 15: Amazon EC2 Feature Diagram (Excerpt)

D2.1.2 CloudML Implementation Documentation (First version) Page 23 of 63

4.2 Ontology
Figure 16 depicts the Saloon Ontology Metamodel.

<<Abstract>>
NumericalConcept

-value: float

0..*

subConcepts

Ontology

1..*
Concept

-selected: boolean
-name:string

Quantifiable
Concept

Countable
Concept

ComparisonExpression

-operator: ComparisonOperator
-value:float

<<enumeration>>
ComparisonOperator
-EQ
-LEQ
-GEQ
-LT
-GT

concepts

concept

constraints

0..*

referencedConcepts
0..*

Type Metamodel

Legend

Ontology Metamodel

Figure 16: Saloon Ontology Metamodel

An Ontology has one or more Concepts and zero or more constraints on
some of them. A Concept can have related sub-concepts that specialise the par-
ent concept (e.g., Tomcat and Jetty are sub-concepts of Application Server).
A Concept can also have referenced concepts that provide more information
about the referencing concept (e.g., OS and Memory concepts provide more in-
formation about the Virtual Machine concept). A Concept can be specialised
to a CountableConcept, meaning that the concept can be counted (e.g., Virtual
Machine), or QuantifiableConcept, meaning that the concept can be measured
(e.g., Memory).

A ComparisonExpression represents a constraint on values of Quantifi-
ableConcepts. The property operator, i.e., =, ≤, ≥, < or > is used to define
the comparison with a given value.

D2.1.2 CloudML Implementation Documentation (First version) Page 24 of 63

Example

In PaaSage, we have defined a Saloon Ontology considering the offerings from
providers such as Amazon EC2, ElasticHosts10, Heroku11 and Windows Azure12.
Figure 17 shows an excerpt of this ontology. Concepts in orange represent con-
crete concepts, i.e., concepts that do not have sub-concepts. The Virtual Ma-
chine is an example of CountableConcept. It refers to the OS and Resource
concepts. The different resources Memory, CPU and Disk, in contrast, are ex-
amples of QuantifiableConcepts.

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Language

Countable
Concept

Tomcat Tomcat 6.0

Tomcat 7.0

Java

Resource

Quantifiable
Concept

Java 6

Java 7

Tomcat
7.0.X

Memory

CPU Cores

Storage

Quantifiable
Concept

Provider Heroku

Amazon
EC2

ElasticHosts

Windows
Azure

Virtual
Machine

Legend

Abstract Concept

Concrete Concept

is a

uses

OS

Ubuntu
Server

...

...

...

...

...

...

Figure 17: Cloud Ontology Diagram (Excerpt)

Figure 31 in Appendix B presents the whole ontology diagram.

10http://www.elastichosts.com/
11https://www.heroku.com/
12https://www.windowsazure.com/

D2.1.2 CloudML Implementation Documentation (First version) Page 25 of 63

http://www.elastichosts.com/
https://www.heroku.com/
https://www.windowsazure.com/

4.3 Mapping
Figure 18 depicts the Saloon Mapping Metamodel.

<<abstract>>
Mapping

-name:string
-root:boolean

Feature
-name:string
Attribute

-name:string
-selected:boolean

Concept

Concept
To

Feature

Concept
To

Attribute

from from

to to

MappingList

mappings 1..*

<<enumeration>>
ComparisonOperator
-EQ
-LEQ
-GEQ
-LT
-GT

<<abstract>>
Expression

condition

ValueAssigment

<<abstract>>
Value

MappingRule

assigment

attribute

valueAssociationQuantifiable
Concept

associations0..*concept

-unit:string

<<abstract>>
NumericValue

value

exp1

exp2

-connector:LogicalOperatorEnum
Condition

0..1

<<enumeration>>
LogicalOperatorEnum
-and
-or

value

-relationship:ComparisonOperator
BooleanExpression

element

Type Metamodel

Legend

Feature Metamodel

Ontology Metamodel

Mapping Metamodel

Figure 18: Saloon Mapping Metamodel

As mentioned, this metamodel defines the relationships between the FMs
and the cloud ontology, allowing the matching of cloud providers with applica-
tion requirements and user goals. A MappingList has multiple Mappings from
ConceptToFeature or from ConceptToAttribute. Therefore, each Mapping
has a related Concept and a Feature or Attribute.

A MappingRule enables the specification of complex mappings. It has an
Expression, indicating when the mapping must be applied. An Expression can
be a Condition or a BooleanExpression. A Condition consists of Boolean-
Expressions and/or other Conditions, which are connected using the and and
or logical operators. A BooleanExpression defines a comparison between a
QuantifiableConcept and a NumericValue with the =, ≤, ≥, < and > op-
erators. A MappingRule also has a ValueAssigment for an Attribute that is
executed if the Expression is true.

Example

As each cloud provider defines its own terminology to describe its offerings,
a mapping model is required for each one of them. Figure 19 shows an ex-
cerpt of the mapping for Amazon EC2. This mapping model only defines Con-
ceptToFeature (e.g., Virtual Machine to Virtual Machine) and ConceptToAt-
tribute (e.g., Disk to vmStorage).

D2.1.2 CloudML Implementation Documentation (First version) Page 26 of 63

Mapping
Metamodel

conforms to

Figure 19: Amazon EC2 Mapping Model (Excerpt)

4.4 Type
Figure 20 depicts the Saloon Type Metamodel. As mentioned, the Type Metamodel
defines basic types required by the other metamodels. In particular, this metamodel
includes basic types such as string, integer, and float, as well as more complex
types such as enumeration, list, and range values. Logic and comparison operat-
ors are also included as enumeration types.

-unit:string

<<abstract>>
NumericValue

<<enumeration>>
LogicalOperatorEnum
-and
-or

<<abstract>>
Value

-value:int
IntValue

-value:float
FloatValue

-value:string
StringValue

<<enumeration>>
TypeEnum

-IntType
-StringType
-BooleanType
-FloatType
-ListType
-RangeType

values
1..*

value

-type:TypeEnum
ListValue

-type:TypeEnum
RangeValue

from

to
value

-value:int
-name:string

EnumerateValue

-value:int
-name:string

EnumerateListValue
values

value

-value:boolean
BooleanValue

<<enumeration>>
ComparisonOperator
-EQ
-LEQ
-GEQ
-LT
-GT

Figure 20: Saloon Type Metamodel

D2.1.2 CloudML Implementation Documentation (First version) Page 27 of 63

5 WS-Agreement
PaaSage uses SLAs in the life-cycle phases of configuration and deployment for
finding the most suitable provisioning and deployment model for multi-cloud ap-
plications, as well as in the life-cycle phase of execution for monitoring the QoS
(cf. D2.1.1 [25]). For this purpose, we have adopted Web Services Agreement
(WS-Agreement) [1], which consists of a language and a protocol for advert-
ising the capabilities of service providers, creating SLAs based on templates,
and monitoring SLAs at run-time.

In the following, we provide a description of the most important classes and
corresponding properties in the WS-Agreement metamodel as well as sample
models conforming to this metamodel.

5.1 Agreements
Unlike the other DSLs adopted in PaaSaage, WS-Agreement abstract syntax
is defined by an XML schema [1]. In order to have all the DSLs adopted
in the same technical space, this schema was transformed to a corresponding
metamodel in Ecore.

Figure 21 shows the WS-Agreement metamodel. An AgreementContext-
Type represents the context information associated with an agreement, such as
service provider and expiration date. An AgreementType represents the name
and identity associated with an AgreementContextType. A AssessmentInter-
valType represents a time interval and a count of assessments associated with an
agreement. A ServiceLevelObjectiveType represents an SLO the agreement is
based on. A KPITargetType represent a key performance indicator (KPI) asso-
ciated with one or more SLOs. A CompensationType represents a penalty and
reward (in term of business value) associated with one or more SLOs. A Guar-
anteeTermType represents the level of quality of service (QoS) from the ser-
vice provider in the agreement, and is associated with a business value specific
to the importance of the level of quality being met. A TermCompositorType is
used as logical AND/OR/XOR operators to logically group GuaranteeTerm-
Types and/or other TermCompositorTypes underneath it, where the logical
group refers to all, one or more, or exactly one level of QoS. This provides a
recursive structure to the logical composition of terms.

D2.1.2 CloudML Implementation Documentation (First version) Page 28 of 63

AgreementContextType
serviceProviderM:MAgreementRoleType
expirationTimeM:MDateTime
templateIdM:MString
templateNameM:MString
anyM:MEFeatureMapEntry
anyAttributeM:MEFeatureMapEntry

<<enumeration>>
AgreementRoleType

AgreementInitiator
EEnumLiteralk
AgreementResponder

<<datatype>>
AgreementRoleTypeObject

<<javaclass>>MorgGeclipseGemfGcommonGutilGEnumerator

AgreementTemplateType
templateIdM:MString

AgreementType
nameM:MString
agreementIdM:MString

AssessmentIntervalType
timeIntervalM:MDuration
countM:MPositiveInteger

BusinessValueListType
importanceM:MInteger

CompensationType
valueUnitM:MString

ContinuingFaultType

WSAgreementModel
mixedM:MEFeatureMapEntry
agreementIdM:MString
locationM:MString
nameM:MString

GuaranteeTermType
obligatedM:MServiceRoleType

KPITargetType
kPINameM:MString

NoncriticalExtensionType
anyM:MEFeatureMapEntry

PreferenceType
groupM:MEFeatureMapEntry
serviceTermReferenceM:MString
utilityM:MFloat

ServiceDescriptionTermType
anyM:MEFeatureMapEntry

ServiceLevelObjectiveType

ServiceNameSet
serviceNameM:MString

ServicePropertiesTypeServiceReferenceType
anyM:MEFeatureMapEntry

<<enumeration>>
ServiceRoleType
ServiceConsumer
ServiceProvider

<<datatype>>
ServiceRoleTypeObject

<<javaclass>>MorgGeclipseGemfGcommonGutilGEnumerator

ServiceSelectorType
anyM:MEFeatureMapEntry
serviceNameM:MString

ServiceTermType

serviceNameM:MString

TermCompositorType
groupM:MEFeatureMapEntry

TermTreeType

TermType

nameM:MString

VariableSetType

VariableType
locationM:MString
metricM:MString
nameM:MString

context

1 terms 1

penalty
kGGB

reward
kGGB

preference kGG1

assessmentInterval

1

agreementOffer

kGGB

all

kGGB

context

kGGB

continuingFault

kGGB

noncriticalExtensions

kGGB

serviceLevelObjective kGGB

template

kGGB

terms

kGGB

serviceScope

kGGB

serviceLevelObjective

1

businessValueList
1

kPITarget
kGG1

variableSet

1

exactlyOne

kGGB

oneOrMore

kGGB

all

kGGB

serviceDescriptionTerm
kGGB

serviceReference
kGGB

serviceProperties
kGGB

guaranteeTerm kGGB

all

kGG1

variable

1GGB

Figure 21: WS-Agreement metamodel

D2.1.2 CloudML Implementation Documentation (First version) Page 29 of 63

Examples

Figure 22 shows a WS-Agreement model specified using an EMF tree-based
editor (see Section 2) that describes the key performance indicators associated
with a SLO.

Figure 22: A sample SLO

Figure 23 shows another WS-Agreement model using an EMF tree-based
editor (see Section 2) that describes the service description term related to the
location of the processing node.

Figure 23: A sample service description term

6 Scalability Rules Language
PaaSage uses scalability rules in the life-cycle phase of execution for guaran-
teeing QoS levels (cf. D2.1.1 [25]). For this purpose, we have developed the
Scalability Rules Language (SRL), which consists of a language for specify-
ing noteworthy behavioural patterns of multi-cloud applications, along with the
corresponding actions to change the provisioning and deployment model in re-
sponse to these patterns.

D2.1.2 CloudML Implementation Documentation (First version) Page 30 of 63

When the reaction is scoped within a single cloud, it will be managed by
the Executionware. Alternatively, it will be managed by the Upperware. The
complex actions managed by the Upperware may include bursting the applica-
tion to an additional cloud, scaling the application across cloud boundaries, or
changing the application configuration followed by its re-deployment. In order
to enact these changes, the Upperware interacts with the Executionware.

In general, all actions associated with the scalability rules are triggered on
event patterns. In order to identify patterns in the application behaviour, com-
ponent instances need to be monitored. As a consequence, SLR provides mech-
anisms which can be used to: express which components of an application will
be monitored by which sensors or metric aggregators (aggregating measure-
ments through formulas involving one or more metrics), define patterns on the
monitoring data, and express actions that have to be executed when a pattern is
matched.

SRL is based on scalability capabilities of existing cloud platforms and mid-
dleware. In particular, Amazon CloudWatch13 and Cloudify’s Automatic Scaling
Rules14 have served as a primary source of inspiration. Nevertheless, SRL goes
beyond these two mechanisms for various reasons: it is cross-cloud capable and
does not depend on the capabilities offered by each cloud provider. Moreover, it
enables combining existing metrics and linking them to computations and event
patterns. The metric description used in SRL as well as parts of the terminology
are taken from OWL-Q [13].

In the following, we provide a description of the most important classes and
corresponding properties in the SRL metamodel as well as sample models con-
forming to this metamodel.

An SRLModel consists of ScalabilityRules, which represent generic scala-
bility rules. A ScalabilityRule is associated with other elements in the metamodel
through the references: relatedTo, when a scalability rule is related to a specific
event, and actions, when a scalability rule may trigger one or more scalability
actions. Since the SRL metamodel spans over different information aspects, we
have split its description in sub-sections.

13http://aws.amazon.com/cloudwatch/
14http://getcloudify.org/guide/2.7/developing/scaling_rules.

html

D2.1.2 CloudML Implementation Documentation (First version) Page 31 of 63

http://aws.amazon.com/cloudwatch/
http://getcloudify.org/guide/2.7/developing/scaling_rules.html
http://getcloudify.org/guide/2.7/developing/scaling_rules.html

6.1 Events
Figure 24 shows the portion of the metamodel that is related to events.

Event

name : EString

SimpleEvent

BinaryEventPattern

operator : BinaryOperator

<<enumeration>>
StatusType

CRITICAL
WARNING
FATAL
SUCCESS

<<enumeration>>
LayerType

SaaS
PaaS
IaaS
BPM
SCC

<<enumeration>>
BinaryOperator

AND
OR
PRECEEDS

FunctionalEvent

functionalType : EString

NonFunctionalEvent

<<enumeration>>
UnaryOperator

NOT
REPEAT

UnaryEventPattern

operator : UnaryOperator
occurrences : EInt

CompositeEventPattern
DataInstance

left1

right1

event1

onEvent

0..1

Figure 24: Events metamodel

An Event can be a SimpleEvent or a CompositeEventPattern. A Sim-
pleEvent can be either functional (e.g., a failure of a component instance), or
non-functional (e.g., a violation of an SLO). While currently not supported by
the metamodel, we are investigating how to extend scalability rules so that they
can provide own actions for functional events.

A CompositeEventPattern can be a BinaryEventPattern or a UnaryE-
ventPattern. A BinaryEventPattern connects two other Events by a binary
operator. These include common, logical operators such as AND and OR, but
also time-based operators, such as PRECEDS, which represents that an event
has to occur prior to another one. For instance, the condition A AND (B OR C)
can be expressed as a BinaryEventPattern X1 that comprises a SimpleEvent
A and another BinaryEventPattern X2 connected by the AND operator. X2,
in turn, comprises two SimpleEvents B and C connected by the OR operator.
A UnaryEventPattern refers just to one event along with an operator that is
applied on the event and enables expressing cases where, e.g., the negation of this
event or the REPEATition of this event is required. The property occurrences
of UnaryEventPattern represents the number of repetitions for the latter case.

A DataInstance represents the actual data associated with the events that
occurred in the system (e.g., the actual value measured, the component that pro-
duced the event, etc., see Figure 26). Moreover, the status property represents
the status of the event. This property provides useful insight for the Upperware
when performing off-line evaluation of the application performance as well as
enables the evaluation/assessment of the events. The property layer represents

D2.1.2 CloudML Implementation Documentation (First version) Page 32 of 63

the layer in the cloud stack where the event has occurred. IaaS or PaaS in-
dicate that the event relates to IaaS or PaaS services used by an application,
respectively, while SaaS, indicates that the event relates to the the application
as a whole, or to a third-party SaaS (e.g., Amazon Simple Email Service15).
Additional (sub-)layers have been included in order to further distinguish dif-
ferent types of SaaS services: SCC (short for Service Composition) indicates
that service composition is concerned, while BPM (short for Business Process
Management) indicates that business processes are concerned.

6.2 Scheduling and Conditions
Figure 25 shows the portion of the metamodel that is related to scheduling and
conditions.

<<enumeration>>
IntervalUnit

MILLISECOND
SECOND
MINUTE
HOUR
DAY
WEEK
MONTH

Schedule

start : EDate
end : EDate
type : ScheduleType
interval : ELong

<<enumeration>>
ScheduleType

FIXED_RATE
FIXED_DELAY SloConditon

id : EString
threshold : EDouble
comparator : ComparisonOperator
validity : EDate

<<enumeration>>
ComparisonOperator

GT
GEQ
LT
LEQ
EQ
NEQ

Metric
(from srl_metric)

NonFunctionalEvent
(from srl_event)

schedule

0..1

condition 1

hasSchedule

0..1

metric 1

Figure 25: Scheduling and Conditions metamodel

A Schedule represents any aspect of the operations or measurements that
need to be executed on a regular, timely basis, such as when an operation/meas-
urement will be run and when the scheduling shall end. The property type rep-
resents whether successive runs happen at a fixed rate or with a fixed delay.
Moreover, the property intervalUnit represents the time unit used for a Sched-
ule’s interval.

Simple, non-functional events (see Section 6.1) refer to SloConditions, which
are derived from the SLOs defined using WS-Agreement (see Section 5). An
SloCondition is used to compare the measurement of a Metric (see Section 6.3)
represented by the property value of DataInstance (see Section 6.1) to a threshold
represented by the property threshold of SloCondition. The comparison between
the measured value and threshold is performed according to a (binary) Com-
parisonOperator. The ComparisonOperator enumerates all possible com-
parison operators that can be used, i.e., greater than or less than (including and

15http://aws.amazon.com/ses/

D2.1.2 CloudML Implementation Documentation (First version) Page 33 of 63

http://aws.amazon.com/ses/

excluding equality) as well as (in)equality. The point in time when an SloCon-
dition is evaluated is a choice of configuration. This can be done based either
on every new measurement created for the associated event, represented by the
boolean property newValue in SloCondition, or based on time, in which case
the SloCondition has to be associated with a Schedule.

6.3 Patterns and Metrics
Figure 26 shows the portion of the metamodel that is related to patterns and
metrics.

<<enumeration>>
MetricType

RAW
COMPOSITE

<<enumeration>>
MetricFunction

PLUS
MINUS
DIV
MODULO
AVERAGE
MEAN
STD
COUNT

MetricTemplate

id : EString
name : EString
description : EString
unit : MetricUnit
layer : LayerType
type : MetricType
valueDirection : EShort

<<enumeration>>
MetricUnit

BYTE
SECOND
DEGREE_CEL
PERCENTAGE
BYTES_PER_SECOND
REQUESTS_PER_SECOND

Metric

componentInstanceId : EString
cloudProviderId : EString
vmInstanceId : EString

Measurable

Property

id : EString
name : EString
description : EString

MetricFormula

function : MetricFunction
value : EDouble

<<enumeration>>
WindowType

FIXED
SLIDING

MetricWindow

type : WindowType
sizeType : WindowSizeType
maxEventSize : ELong
maxTimeSize : ELong

<<enumeration>>
WindowSizeType

MEASUREMENTS_ONLY
TIME_ONLY
FIRST_MATCH
BOTH_MATCH

Schedule
(from srl_sensoring)

MetricFormulaParameter

Constant

value : EDouble

formula set for
COMPOSITE
templates

hasTemplate 1

measures1

realizedBy

0..*

formula0..1

window0..1

hasSchedule0..1componentMetrics

0..*

parameters

0..*

Figure 26: Patterns and Metrics metamodel

A Metric represents a generic metric that can refer to either raw measure-
ments or aggregations on them. A MetricTemplate represents common metric
information that might have been repeated if encapsulated directly in Metric.
Hence, multiple Metrics can refer to the very same MetricTemplate. In contrast
to the repeated information, a MetricTemplate does not specify dynamic details
such as how often the respective metric measurements are produced and which
component instances on which cloud are concerned. The property type repres-
ents the kind of template and hence its associated Metrics. RAW indicates that
the associated Metric refers to raw measurments, while COMPOSITE indicates
that the metric is computed from other metrics. In the latter case, a Metric-
Template is associated with a MetricFormula, which represents the function

D2.1.2 CloudML Implementation Documentation (First version) Page 34 of 63

that computes a metric from other metrics. A MetricTemplate is also associ-
ated with Measurable, which represents the property that the MetricTemplate
(actually its associated metrics) measures.

For its computing task, a MetricFormula may be associated to one or more
MetricFormulaParameters, which can be Constants or other MetricTemp-
lates. The parameters are used as input to the function for computing the com-
posite metric. For instance, the computation of an availability metric may divide
another metric such as uptime with a specific constant value. With respect to
non-constant parameters, the computation for a metric m proceeds from m to
the respective template mt, then to formula and parameters, and finally matches
the non-constant parameters with the contents of the m.componentMetrics set
(i.e., the metric components).

A Metric may be associated with a MetricWindow, which represents how
many DataInstances will be temporary stored and used to perform computa-
tions. The window size may be defined by a time period, or by a fixed number
of events, or a combination of both. In the latter case, it may be sufficient to wait
for either the first property to be fulfilled, or for both. The property sizeType
represents the strategy to be used for this purpose. Moreover, the property type
represents what happens when the window size has been reached. SLIDING in-
dicates that the windows is slid by dropping superfluous elements, while FIXED
indicates that the window is cleared.

A Metric may also be associated to a Schedule. In case of COMPOSITE
metrics, the schedule defines when and how often the metric will be evaluated
by applying the associated MetricFormula. Please note that this reference is
indirect through the respective MetricTemplate. In case of RAW metrics, the
schedule defines how often the value is measured by the respective sensor.

Figure 27 shows further aspects of RAW metrics.

Metric
(from srl_metric)

componentInstanceId : EString
cloudProviderId : EString
vmInstanceId : EString

MetricObjectBinding

bindingType : MetricObjectBindingType

MetricComponentBinding

MetricApplicationBinding

Sensor

configuration
isPush : EBoolean

'sensor' set
for RAW
metrics

'ComponentMetrics' set
for COMPOSITE metrics

DataInstance
(from srl_event)

id : ELong
timestamp : ELong
value : EString
status : StatusType
layer : LayerType

Source

MetricVmBinding

ComponentMetrics

0..*

binding
0..1sensor

0..1

created by
1

Figure 27: RAW metrics metamodel

A RAW metric is associated with one Sensor, which produces the actual
measurement. Details regarding which component/object is actually measured

D2.1.2 CloudML Implementation Documentation (First version) Page 35 of 63

are exclusively covered by the MetricObjectBinding associated with the Metric.
In particular, different components can be measured depending on the respective
type of MetricObjectBinding, such as the application as a whole, one or more
of its component instances, or one or more of the underlying virtual machine
instances in a particular cloud.

Please note that the modelling does not state whether values are polled from
the sensor by the metric (rather the service responsible for the collection of the
metric measurements) or pushed by the sensor. The measurements by sensors
can include the status of a component. For instance, this is important with respect
to integration of the HyperFlow engine where the workflow engine may require
reconfiguration of the application depending on the stage of the workflow (cf.
D2.1.1e [26] and D5.1.1 [7]).

6.4 Actions
Figure 28 illustrates the portion of the metamodel that is related to actions.

Action

id : EString
name : EString
type : ActionType

<<enumeration>>
ActionType

CREATE
SCALE

Event
(from srl_event)

ScalabilityRule

id : EString
name : EString

ScalingAction

count : EInt
componentID : EString
componentConfigID : EString
cloudProviderID : EString
vmTypeID : EString
vmConfigID : EString
scalingType : ScalingActionType

<<enumeration>>
ScalingActionType

SCALE_IN
SCALE_OUT
SCALE_UP
SCALE_DOWN

EventCreationAction
relatedEvent1

actions

1..*

Figure 28: Actions metamodel

A triggered ScalabilityRule leads to performing of one or more Actions,
which can be ScalingActions or EventCreationActions.

A ScalingAction represents which entities of an application will be changed
and how. The scalingType property represents how the affected entities will be
changed. SCALE_OUT, SCALE_IN, SCALE_UP, and SCALE_DOWN in-
dicate the corresponding type of changes. The other properties of ScalingAction
reference the affected entities and also indicate their number (e.g., to add a spe-
cific number of instances of a specific component). The affected entities are actu-
ally associated with their respective definitions in the corresponding CLOUDML
model (see Section 3) and may refer to component instances, virtual machine
instances, and their respective configurations. In this way, a ScalingAction spe-
cifies all the necessary details in order to execute the four action types envisioned
in the project.

D2.1.2 CloudML Implementation Documentation (First version) Page 36 of 63

An EventCreationAction, in contrast, only specifies that the application has
reached a state where the current provisioning and deployment model may need
to be checked by the Upperware. For instance, this is the case for the HyperFlow
workflow engine that is to be integrated into the Executionware (cf. D5.1.1 [7]).

6.5 Examples
In this section, we present how two common requirements are represented in
sample SRL models. The first example operates at the level of the application
as a whole and considers the actions to take when availability drops below or
response time exceeds a certain threshold. The second example operates at the
level of a single component, namely a Couchbase distributed database, and maps
empirical knowledge about the database gained through experiments to a scalab-
ility rule.

Availability and Response Time

This sample SRL model is analogous to the sample models in the SENSAPP

running example from D2.1.1 [25] and D4.1.1 [14]. Here, we assume that an
expert has provided the following scalability rule in prose:

Scale out when the average application response time goes beyond
300ms or its availability falls below 99.9%.

Figure 29 shows an excerpt of the model of this rule, while the following
paragraphs discuss the individual entities. Here, we assume that SENSAPP has
an application identifier of 12345.

The requirements leads to a single BinaryEventPattern associated with two
non-functional SimpleEvents connected by an OR operator. Each of the Sim-
pleEvents is associated with an SloCondition. The respective SLO conditions
specify the thresholds of 99.9% and 30ms, respectively.

The events above lead to two high-level metrics: Metric1 represents the re-
sponse time and Metric2 represents the availability of the application. Both
metrics are associated with their respective MetricTemplates. Response time is
a RAW metric, as the response time is directly measured by a sensor. Availabil-
ity, in contrast, is a COMPOSITE metric, as it is computed by dividing Metric3,
which represents the uptime, with a constant Constant1, which represents the
total monitoring time. In order to compute this metric, Metric2 has attached a
MetricFormula. We do not show the formula in this example, but we do so in
the next one.

D2.1.2 CloudML Implementation Documentation (First version) Page 37 of 63

SimpleEvent1

name : time_violation

SimpleEvent2

name : avail_violation

SloCondition1

operator : GT

SloCondition2

operator : LT

Metric1

appID : 12345

MetricTemplate1

unit : SECONDS
layer : IaaS
type : RAW
valueDirection: 0

MetricTemplate2

unit : PERCENTAGE
layer : IaaS
type : COMPOSITE

Constant1

value : 3600

Metric3

appID : 12345

Metric2

appID : 12345

BinaryEventPattern

operator : OR

MetricFormula
function: DIVIDE

MetricTemplate3
unit: SECONDS
layer: IaaS
type: RAW
valueDirection: 1

objective

objective

metric

metric

hasTemplate

componentMetrics

hasTemplate

rightleft

hasTemplate

parameters

parameters

formula

Figure 29: A sample SRL model for availability and response time (Excerpt)

The metrics above lead to a single rule that is associated with a single Action.
Yet, it is unknown to the rule processing how the scale out described in prose
should take place. Therefore, the action will be an EventCreationAction that
leaves the right decisions to the Upperware (cf. D1.6.1 [11]). Again, we do not
show the action in this example.

Database

This sample SRL model scales a component when all instances of a single com-
ponent in a particular cloud have a CPU load beyond 50% and at the same time
at least one instance has a load beyond 85%. The average over 5min and 1min
will be computed for the 50% and 85% thresholds, respectively. The sensors will
be queried once per second. We found this pattern particularly useful for scaling
out the Couchbase16 distributed database [29].

Figure 29 shows an excerpt of the model of this rule, while the following
paragraphs discuss the individual entities. In order to avoid clutter, this figure
omits some composite metrics, which, however, are symmetric to the ones that
are shown; it also omits the events created for this example. Here, we assume
that Couchbase has a component identifier 99-99. Furthermore, we assume that
the cloud on which Cloudbased is deployed has a cloud identifier 88-88. Couch-
base is scaled to 3 instances with component instance identifiers 1, 2, 3. A CPU
sensor is associated with each of these instances.

16http://www.couchbase.com/

D2.1.2 CloudML Implementation Documentation (First version) Page 38 of 63

http://www.couchbase.com/

Scheduler1

unit : SECOND
interval : 1
type : FIXED_RATE

Window1

type : SLIDING
size_type : TIME_ONLY
time_size : 5
time_type : MINUTE

Window2

type : SLIDING
size_type : TIME_ONLY
time_size : 1
time_type : MINUTE

MetricFormula1

function : AVG

MetricTemplate1

unit : PERCENTAGE
layer : IaaS
type : RAW

MetricTemplate2

unit : PERCENTAGE
layer : IaaS
type : COMPOSITE

Metric1

com_inst_id : 1
cloud_id : 88-88

Metric2

com_inst_id : 2
cloud_id : 88-88

Metric3

com_inst_id : 3
cloud_id : 88-88

SloCondition5

value : 50
newValue : true
comparator : GT

Metric8

cloud_id : 88-88

Metric9

cloud_id : 88-88

SloCondition6

value : 85
newValue : true
comparator : GT

formula

parameters

hasScheduler hasTemplate

hasTemplate

hasTemplate

hasScheduler

hasScheduler

hasTemplate

hasTemplate

ComponentMetrics
window

window

metric

metric

Figure 30: A sample SRL model model for Couchbase scalability rule (Excerpt)

NonFunctionalEvent
#e1 avg 50% load for 1 in 5 min
#e2 avg 50% load for 2 in 5 min
#e3 avg 50% load for 3 in 5 min
#e4 avg 85% load for 1 in 1 min
#e5 avg 85% load for 2 in 1 min
#e6 avg 85% load for 3 in 1 min

BinaryEventPattern
#e7 #e1 AND #e2
#e8 #e3 AND #e7
#e9 #e4 OR #e5

#e10 #e6 OR #e9
#e11 #e10 AND #e8

Table 1: Events created for database scalability rule

The requirements lead to six simple, non-functional Events (see Table 1).
In particular, these Events correspond to the condition that either of the three
instances exceed the 50% and 85% threshold, respectively. The overall event
connects the SimpleEvent by either AND or OR operators.

The events above leads to a RAW metric per monitored sensor, i.e. to three
symmetric Metrics, with a single, common MetricTemplate. The layer of
this MetricTemplate is IaaS. Each of the Metrics is associated with the same
Schedule gathering new data once per second. Any of these RAW metrics is
part of two COMPOSITE metrics that share a common MetricTemplate. Fur-
thermore, two Windows are shared among the respective COMPOSITE met-
rics. Figure 30 only shows the three RAW metrics (Metric1–Metric3) together
with two COMPOSITE metrics (Metric8 and Metric9). The four other metrics
(Metric4–Metric7) are symmetric to Metric8 and Metric9, but refer to Metric2
and Metric1, respectively.

D2.1.2 CloudML Implementation Documentation (First version) Page 39 of 63

SloCondition
#sloc1 value 50

comparator GT
newValue true
metric Metric4

#sloc2 value 85
comparator GT
newValue true
metric Metric5

#sloc3 value 50
comparator GT
newValue true
metric Metric6

#sloc4 value 85
comparator GT
newValue true
metric Metric7

#sloc5 value 50
comparator GT
newValue true
metric Metric8

#sloc6 value 85
comparator GT
newValue true
metric Metric9

Table 2: SloConditions created for database scalability rule

The requirements lead to six SloConditions (see Table 2). In particular, three
conditions check for a 50% threshold and three conditions checking for an 85%
threshold. Whenever the metrics associated with these SloConditions generate
values that violate the SloCondition, the non-functional event associated with
the SloCondition is triggered.

The occurrence of a sufficient subset of non-functional events activates the
outer BinaryEventPatter #e11. The ScalabilityRules for this example require
that when event #e11 occurs, a single SCALE_OUT action for Couchbase 99–
99 on cloud 88–88 is triggered, that adds an additional instance to the database
cluster.

7 Java APIs and CDO
As mentioned, the DSLs adopted in PaaSage are represented by metamodels in
Ecore (see Section 2). This enables to specify models using an EMF tree-based
editor as well as to programmatically manipulate and persist them through Java
APIs. Listing 1 shows an excerpt of the Java code for creating a CLOUDML
model for the SENSAPP example that is equivalent to the CLOUDML model
specified using the EMF tree-based editor (see Section 3). The full version of
the Java code is available for reference in Appendix C.

D2.1.2 CloudML Implementation Documentation (First version) Page 40 of 63

Listing 1 shows the creation of an ExternalComponent equivalent to
the one in Figure 6. The classes that are instantiated and initialised in the code
have been automatically generated by the EMF generator model based on the
CLOUDML metamodel in Ecore. All class instances are obtained using the
CloudmlFactory object specific for the CLOUDML metamodel. This object
provides a set of methods which are used to make sure that the model objects are
appropriately instantiated.

Listing 1: A sample Provider definition
ExternalComponent beanstalkContainer = CloudmlFactory.eINSTANCE.

createExternalComponent();
beanstalkContainer.setName("BeanstalkContainer");
beanstalkContainer.setProvider(beanstalk);
beanstalkContainer.setLocation("eu");

ProvidedContainmentPort webServer = CloudmlFactory.eINSTANCE.
createProvidedContainmentPort();

webServer.setName("webServer");
webServer.setOwner(beanstalkContainer);

Property webServerLanguage = CloudmlFactory.eINSTANCE.createProperty()
;

webServerLanguage.setName("language");
webServerLanguage.setValue("Java");

webServer.getProperties().add(webServerLanguage);
beanstalkContainer.getProvidedContainmentPorts().add(webServer);

Listing 2 shows the creation of a VM equivalent to the one in Figure 8.

Listing 2: A sample VM definition
// create a SL VM
VM sl = CloudmlFactory.eINSTANCE.createVM();
sl.setName("SL");
sl.setMinCores(1);
sl.setMaxCores(0);
sl.setMinRam(1024);
sl.setMaxRam(0);
sl.setMinStorage(50);
sl.setMaxStorage(0);
sl.setLocation("no");
sl.setOs("ubuntu");
sl.setSshKey("cloudml");
sl.setSecurityGroup("SensApp");
sl.setGroupName("SensApp");
sl.setPrivateKey("./cloudml.pem");
sl.setImageId("Ubuntu-SINTEF");
sl.setIs64os(false);
sl.setProvider(flexiScale);

Listing 3 shows the creation an InternalComponent equivalent to the
one in Figure 7. This InternalComponent has an associated Resource
representing a WAR file along with the corresponding life-cycle control scripts

D2.1.2 CloudML Implementation Documentation (First version) Page 41 of 63

(e.g., download and install commands). It also has a Servlet container Requi-
redContainmentPort, a MongoDB RequiredCommunicationPort,
and an HTTP ProvidedCommunicationPort.

Listing 3: A sample InternalComponent definition
// create a SensApp InternalComponent
InternalComponent sensApp = CloudmlFactory.eINSTANCE.

createInternalComponent();
sensApp.setName("SensApp");

Resource sensAppWar = CloudmlFactory.eINSTANCE.createResource();
sensAppWar.setDownloadCommand(""
+ "wget -P ~ http://github.com/downloads/SINTEF-9012/sensapp/sensapp.

war; "
+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws.com

/scripts/linux/ubuntu/sensapp/sensapp.sh");
sensAppWar.setInstallCommand("cd ~; sudo bash sensapp.sh");
sensAppWar.setName("sensAppWar");

RequiredContainmentPort servletContainerRequired = CloudmlFactory.
eINSTANCE.createRequiredContainmentPort();

servletContainerRequired.setName("servletContainerRequired");
servletContainerRequired.setOwner(sensApp);

RequiredCommunicationPort mongoDBRequired = CloudmlFactory.eINSTANCE.
createRequiredCommunicationPort();

mongoDBRequired.setName("mongoDBRequired");
mongoDBRequired.setIsLocal(true);
mongoDBRequired.setIsMandatory(true);
mongoDBRequired.setPortNumber(0);
mongoDBRequired.setComponent(sensApp);

ProvidedCommunicationPort restProvided = CloudmlFactory.eINSTANCE.
createProvidedCommunicationPort();

restProvided.setName("RESTProvided");
restProvided.setIsLocal(false);
restProvided.setPortNumber(8080);
restProvided.setComponent(sensApp);

sensApp.getResources().add(sensAppWar);
sensApp.getProvidedCommunicationPorts().add(restProvided);
sensApp.getRequiredCommunicationPorts().add(mongoDBRequired);
sensApp.setRequiredContainmentPort(servletContainerRequired);

Listing 4 shows the creation of a Communication binding between the
SENSAPP and the SENSAPP ADMIN InternalComponents, equivalent to
the one in Figure 9.

Listing 4: A sample Communication definition
Communication sensAppAdminSensApp = CloudmlFactory.eINSTANCE.

createCommunication();
sensAppAdminSensApp.setName("SensAppAdminSensApp");
sensAppAdminSensApp.setProvidedCommunicationPort(restProvided);
sensAppAdminSensApp.setRequiredCommunicationPort(restRequired);

D2.1.2 CloudML Implementation Documentation (First version) Page 42 of 63

Listing 5 shows the creation of a Containment binding between the Jetty
InternalComponent and the SL ExternalComponent, equivalent to
the one in Figure 10.

Listing 5: A sample Containment definition
Containment jetty2Sl = CloudmlFactory.eINSTANCE.createContainment();
jetty2Sl.setName("jetty2SL");
jetty2Sl.setProvidedContainmentPort(slProvided);
jetty2Sl.setProvidedContainmentPort(slProvided);

Resource configureJetty = CloudmlFactory.eINSTANCE.createResource();
configureJetty.setName("configureJetty");
configureJetty.setConfigureCommand("sudo bash configure_jetty.sh");
configureJetty.setDownloadCommand("wget -P ~ http://cloudml.org/

scripts/linux/ubuntu/sensappAdmin/configure_jetty.sh");

jetty2Sl.getResources().add(configureJetty);

Listing 6 shows the process of saving a CLOUDML model in a CDO repos-
itory. As mentioned, CDO uses a set of APIs which are designed after the JDBC
APIs. In order to save a model we need to first create a session and obtain a
transaction over it. This example adopts a local database that is accessed using a
TCP connector from the Net4j framework17, a partner project used within CDO.
Once the transaction is obtained, the CLOUDML model is associated with the
CDOResource responsible for its persistence, and the transaction is commit-
ted.

Listing 6: Saving a CLOUDML model in a CDO repository
// initialise and activate a container
final IManagedContainer container = ContainerUtil.createContainer();
Net4jUtil.prepareContainer(container);
TCPUtil.prepareContainer(container);
CDONet4jUtil.prepareContainer(container);
container.activate();

// create a Net4j TCP connector
final IConnector connector = (IConnector) TCPUtil.getConnector(

container, "localhost:2036");

// create the session configuration
CDONet4jSessionConfiguration config = CDONet4jUtil.

createNet4jSessionConfiguration();
config.setConnector(connector);
config.setRepositoryName("CloudMLCDORepository");

// create the actual session with the repository
CDONet4jSession cdoSession = config.openNet4jSession();

// obtain a transaction object
CDOTransaction transaction = cdoSession.openTransaction();

17https://www.eclipse.org/modeling/emf/?project=net4j

D2.1.2 CloudML Implementation Documentation (First version) Page 43 of 63

https://www.eclipse.org/modeling/emf/?project=net4j

// create a CDO resource object
CDOResource resource = transaction.getOrCreateResource("/

sensAppResource");

// associate the \cloudml model to the resource
resource.getContents().add(model);

// commit the transaction to persist the model
transaction.commit();

Listing 7 shows the process of loading and modifying a CLOUDML model.
In this example, an SL VM is moved from the Flexiant to the AWS-EC2 cloud.

Listing 7: Loading and modifying a CLOUDML model in a CDO repository
// open a new transaction
CDOTransaction transaction = cdoSession.openTransaction();

// load the existing resource of SensApp
CDOResource resource = transaction.getResource("/sensAppResource");

VM vm = null;

// find the Flexiant cloud
assertTrue(resource.getContents().get(0) instanceof CloudMLModel);
CloudMLModel model = (CloudMLModel) resource.getContents().get(0);

EList<Cloud> clouds = model.getClouds();
Cloud flexiantCloud = null;
for (int i = 0; i < clouds.size(); i++) {

flexiantCloud = clouds.get(i);
if (flexiantCloud.getName().equalsIgnoreCase("Flexiant")) {

// remove the first of the External Components of the Flexiant
cloud

vm = (VM) flexiantCloud.getExternalComponents().get(0);
flexiantCloud.getExternalComponents().remove(0);
break;

}
}

// find the AWS-EC2 cloud
Cloud awsCloud = null;
for (int i = 0; i < clouds.size(); i++) {

awsCloud = clouds.get(i);
if (awsCloud.getName().equalsIgnoreCase("AWS-EC2")){
// add the External Component from Flexiant to AWS-EC2
awsCloud.getExternalComponents().add(vm);
break;

}
}

// commit the transaction to persist the updated model
transaction.commit();

D2.1.2 CloudML Implementation Documentation (First version) Page 44 of 63

The examples above show the Java code for programmatically saving, load-
ing, and modifying a CLOUDML model in a CDO repository. The Java code for
programmatically saving, loading, and modifying Saloon, WS-Agreement, and
SLR models is analogous, since all DSLs adopted in PaaSage are represented by
metamodels in Ecore, which allows for using the same Java APIs.

8 Metadata Database
The Metadata Database stores all information manipulated by the PaaSage plat-
form. Hence, the Metadata Database schema has to cover all concepts in the
metamodels of the DSLs presented above, along with additional concepts that
are not currently in these metamodels, such as metadata about configuration,
deployment, and execution models (cf. D4.1.1 [14], Sections 3.1.2-3.1.7). In
this respect, the Metadata Database schema can be regarded as a super-set of the
metamodels of the DSLs.

In order to guarantee that the Metadata Database schema covers all concepts
in the metamodels of each DSL, O-R mappings have to be specified and realised.
At month 18, we have specified these mappings graphically (cf. D4.1.1 [14],
Sections 3.1.2-3.1.7). The realisation of these mapping is part of future work
(see Section 10).

9 Related Work
In the cloud community, libraries such as jclouds18 or DeltaCloud19 provide
generic APIs abstracting over the heterogeneous APIs of IaaS providers, thus
reducing cost and effort of deploying multi-cloud applications. While these lib-
raries effectively foster the deployment of cloud-based applications across mul-
tiple cloud infrastructures, they remain code-level solutions, which make design
changes difficult and error-prone. More advanced frameworks such as Cloud-
ify20, Puppet21, or Chef22 provide DSLs that facilitate the specification and en-
actment of provisioning, deployment, monitoring, and adaptation of cloud-based
applications, without being language-dependent. As for the research community,
the mOSAIC [27] project tackles the vendor lock-in problem by providing an
API for provisioning and deployment of multi-cloud applications. This solution
is also limited to the code level. The Topology and Orchestration Specification

18http://www.jclouds.org
19http://deltacloud.apache.org/
20http://www.cloudifysource.org/
21https://puppetlabs.com/
22http://www.opscode.com/chef/

D2.1.2 CloudML Implementation Documentation (First version) Page 45 of 63

http://www.jclouds.org
http://deltacloud.apache.org/
http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

for Cloud Applications (TOSCA) [18] is a specification developed by the OASIS
consortium, which provides a language for specifying the components compris-
ing the topology of cloud-based applications along with the processes for their
orchestration. By contrast with PaaSage, the aforementioned approaches only
focus on the management of cloud-based applications deployed on IaaS envir-
onments.

The literature encompasses several approaches to the management of cloud-
based applications deployed on PaaS environments. Sellami et al. [28] pro-
pose a model-driven approach to PaaS-independent provisioning and manage-
ment of cloud-based applications. This approach includes a language for mod-
elling provisioning and deployment, as well as a REST API for enacting them.
The Cloud4SOA EU project [5] provides a framework for facilitating the match-
making, management, monitoring, and migration of cloud-based applications on
PaaS environments. By contrast with PaaSage, these approaches focus on one
cloud delivery model only (i.e., either IaaS or PaaS, but not both). In addition,
their models are not causally connected to the running system, and may become
irrelevant as soon as the running system is changed. The approaches proposed
in the CloudScale [4] and Reservoir [22] projects suffer similar limitations.

The work of Shao et al. [30] was a first attempt to build a models@run-time
platform for the cloud, but remains restricted to monitoring, without providing
support for enactment of provisioning and deployment. To the best of our know-
ledge, PaaSage is thus the first attempt to reconcile cloud management solutions
with modelling practices through the use of models@run-time.

The flexibility, expressiveness, and power of SRL compared to commercial
scalability rules languages, but also to other languages such as SYBL [6], leads
to a certain complexity in the model. While the complexity is well-justified,
the language can support the production of simple expressions where some level
of detail can be hidden. This simplification will be performed throughout the
course of the project.

10 Conclusions and Future Work
In this deliverable, we have provided an initial version of the technical docu-
mentation of the DSLs adopted in PaaSage. In particular, we have described
the modelling concepts, their attributes and their relationships, as well as the
rules for combining these concepts to specify valid models that conform to these
DSLs. Moreover, we have exemplified how to specify models through an Eclipse
editor as well as how to programmatically manipulate and persist them through
CDO.

D2.1.2 CloudML Implementation Documentation (First version) Page 46 of 63

In the future, we will aggregate the metamodels presented in this deliverable,
along with additional concepts currently captured by the Metadata Database only
(e.g. users, organisations, and roles) into an extensive CAMEL metamodel. This
metamodel will link the various concepts from the DSLs in order to have a uni-
form and integrated CAMEL language. Moreover, we will realise the mapping
between the Metadata Database and the CAMEL metamodel through one of the
approaches provided by CDO. In particular, we plan to adopt either a DB or a
Hibernate store provided by CDO, and exploit as much as possible the internal
mappings of these stores, possibly customising them by means of annotations
or Hibernate mapping files (see Section 2). This will ensure that the changes
in the CAMEL metamodel are automatically reflected in the Metadata Database
schema. Finally, we will validate these mappings to ensure that the Metadata
Database persists appropriate information.

Please note the capabilities of the DSLs presented in this deliverable reflect
our understanding of the requirements of PaaSage at month 18. These require-
ments will be developed iteratively throughout the course of the project. There-
fore, an important task is to adapt the capabilities of the DSLs to the changing
requirements, and adapt the Metadata Database schema accordingly. In this re-
spect, the research partners in PaaSage will provide feedback on whether the
elements of each DSL are adequate to develop the components of the PaaSage
platform. Similarly, the industrial partners in PaaSage will provide feedback on
whether the elements of each DSL are satisfactory for modelling the use cases.

References
[1] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,

Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke and Ming Xu.
Web Services Agreement Specification (WS-Agreement). Tech. rep. Open
Grid Forum, Mar. 2007.

[2] Colin Atkinson and Thomas Kühne. “Rearchitecting the UML infrastruc-
ture”. In: ACM Transactions on Modeling and Computer Simulation 12.4
(2002), pp. 290–321. DOI: 10.1145/643120.643123.

[3] David Benavides, Sergio Segura and Antonio Ruiz Cortés. “Automated
analysis of feature models 20 years later: A literature review”. In: Inf. Syst.
35.6 (2010), pp. 615–636. DOI: 10.1016/j.is.2010.01.001.

[4] Gunnar Brataas, Erlend Stav, Sebastian Lehrig, Steffen Becker, Goran
Kopčak and Darko Huljenic. “CloudScale: scalability management for
cloud systems”. In: ICPE 2013: 4th ACM/SPEC International Confer-
ence on Performance Engineering. ACM, 2013, pp. 335–338. ISBN: 978-
1-4503-1636-1. DOI: 10.1145/2479871.2479920.

D2.1.2 CloudML Implementation Documentation (First version) Page 47 of 63

http://dx.doi.org/10.1145/643120.643123
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1145/2479871.2479920

[5] Cloud4SOA EU project. URL: http://www.cloud4soa.eu/.

[6] Georgiana Copil, Daniel Moldovan, Hong Linh Truong and Schahram
Dustdar. “SYBL: An Extensible Language for Controlling Elasticity in
Cloud Applications”. In: CCGrid 2013: 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE Computer So-
ciety, 2013, pp. 112–119. ISBN: 978-1-4673-6465-2. DOI: 10.1109/
CCGrid.2013.42.

[7] Jörg Domaschka, Panagiotis Garefalakis, Damianos Metalidis, Chryso-
stomos Zeginis, Bartosz Balis, Dariusz Król, Craig Sheridan, Kuan Lu,
Edwin Yaqub and Anthony Sulistio. D5.1.1/D5.3.1 – Prototype Execu-
tionware, Prototype New Execution Engines. PaaSage project deliverable.
Oct. 2013.

[8] Nicolas Ferry, Franck Chauvel, Alessandro Rossini, Brice Morin and Arnor
Solberg. “Managing multi-cloud systems with CloudMF”. In: NordiCloud
2013: 2nd Nordic Symposium on Cloud Computing and Internet Techno-
logies. Ed. by Arnor Solberg, Muhammad Ali Babar, Marlon Dumas and
Carlos E. Cuesta. ACM, 2013, pp. 38–45. ISBN: 978-1-4503-2307-9. DOI:
10.1145/2513534.2513542.

[9] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin and Arnor
Solberg. “Towards model-driven provisioning, deployment, monitoring,
and adaptation of multi-cloud systems”. In: CLOUD 2013: IEEE 6th In-
ternational Conference on Cloud Computing. Ed. by Lisa O’Conner. IEEE
Computer Society, 2013, pp. 887–894. ISBN: 978-0-7695-5028-2. DOI:
10.1109/CLOUD.2013.133.

[10] Thomas R. Gruber. “A translation approach to portable ontology specific-
ations”. In: Knowledge Acquisition 5.2 (June 1993), pp. 199–220. ISSN:
1042-8143. DOI: 10.1006/knac.1993.1008.

[11] Keith Jeffery and Tom Kirkham. D1.6.1 – Initial Architecture Design.
PaaSage project deliverable. Oct. 2013.

[12] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) - Feas-
ibility Study. Tech. rep. The Software Engineering Institute, 1990. URL:
http://www.sei.cmu.edu/reports/90tr021.pdf.

D2.1.2 CloudML Implementation Documentation (First version) Page 48 of 63

http://www.cloud4soa.eu/
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1109/CCGrid.2013.42
http://dx.doi.org/10.1145/2513534.2513542
http://dx.doi.org/10.1109/CLOUD.2013.133
http://dx.doi.org/10.1006/knac.1993.1008
http://www.sei.cmu.edu/reports/90tr021.pdf

[13] Kyriakos Kritikos and Dimitris Plexousakis. “OWL-Q for Semantic QoS-
based Web Service Description and Discovery”. In: SMR2 2007: Work-
shop on Service Matchmaking and Resource Retrieval in the Semantic
Web. Ed. by Tommaso Di Noia, Rubén Lara, Axel Polleres, Ioan Toma,
Takahiro Kawamura, Matthias Klusch, Abraham Bernstein, Massimo Paolucci,
Alain Leger and David L. Martin. Vol. 243. CEUR Workshop Proceed-
ings. CEUR, 2007.

[14] Kyriakos Kritikos et al. D4.1.1 – Prototype Metadata Database and So-
cial Network. PaaSage project deliverable. Mar. 2014.

[15] Thomas Kühne. “Matters of (meta-)modeling”. In: Software and Systems
Modeling 5.4 (2006), pp. 369–385. DOI: 10.1007/s10270-006-
0017-9.

[16] Object Management Group. Unified Modeling Language Specification.
2.4.1. http://www.omg.org/spec/UML/2.4.1/. Aug. 2011.

[17] OMG Model-Driven Architecture. URL: http://www.omg.org/
mda/.

[18] Derek Palma and Thomas Spatzier. Topology and Orchestration Specific-
ation for Cloud Applications (TOSCA). Tech. rep. Organization for the
Advancement of Structured Information Standards (OASIS), June 2013.
URL: http://docs.oasis-open.org/tosca/TOSCA/v1.0/
cos01/TOSCA-v1.0-cos01.pdf.

[19] Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence Duch-
ien. “Towards multi-cloud configurations using feature models and on-
tologies”. In: MultiCloud 2013: International Workshop on Multi-cloud
Applications and Federated Clouds. ACM, 2013, pp. 21–26. ISBN: 978-
1-4503-2050-4. DOI: 10.1145/2462326.2462332.

[20] Clément Quinton, Daniel Romero and Laurence Duchien. “Cardinality-
based feature models with constraints: a pragmatic approach”. In: SPLC
2013: 17th International Software Product Line Conference. Ed. by To-
moji Kishi, Stan Jarzabek and Stefania Gnesi. ACM, 2013, pp. 162–166.
ISBN: 978-1-4503-1968-3. DOI: 10.1145/2491627.2491638.

[21] Clément Quinton, Romain Rouvoy and Laurence Duchien. “Leveraging
Feature Models to Configure Virtual Appliances”. In: CloudCP 2012:
2nd International Workshop on Cloud Computing Platforms. ACM, 2012,
2:1–2:6. ISBN: 978-1-4503-1161-8. DOI: 10.1145/2168697.2168699.

[22] B. Rochwerger et al. “The reservoir model and architecture for open fed-
erated cloud computing”. In: IBM Journal of Research and Development
53.4 (July 2009), pp. 535–545. ISSN: 0018-8646. DOI: 10.1147/JRD.
2009.5429058.

D2.1.2 CloudML Implementation Documentation (First version) Page 49 of 63

http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://dx.doi.org/10.1145/2462326.2462332
http://dx.doi.org/10.1145/2491627.2491638
http://dx.doi.org/10.1145/2168697.2168699
http://dx.doi.org/10.1147/JRD.2009.5429058
http://dx.doi.org/10.1147/JRD.2009.5429058

[23] Alessandro Rossini and the PaaSage consortium. D2.1.3 – CloudML Im-
plementation Documentation - Final version. PaaSage project deliverable.
Oct. 2015 (To appear).

[24] Alessandro Rossini, Adrian Rutle, Yngve Lamo and Uwe Wolter. “A
formalisation of the copy-modify-merge approach to version control in
MDE”. In: Journal of Logic and Algebraic Programming 79.7 (2010),
pp. 636–658. DOI: 10.1016/j.jlap.2009.10.003.

[25] Alessandro Rossini, Arnor Solberg, Daniel Romero, Jörg Domaschka,
Kostas Magoutis, Lutz Schubert, Nicolas Ferry and Tom Kirkham. D2.1.1
– CloudML Guide and Assesment Report. PaaSage project deliverable.
Oct. 2013.

[26] Alessandro Rossini et al. D2.1.1e – CloudML Guide and Assesment Re-
port (Extended). PaaSage project deliverable. Nov. 2013.

[27] Calin Sandru, Dana Petcu and Victor Ion Munteanu. “Building an Open-
Source Platform-as-a-Service with Intelligent Management of Multiple
Cloud Resources”. In: UCC 2012: IEEE 5th International Conference on
Utility and Cloud Computing. IEEE Computer Society, 2012, pp. 333–
338. ISBN: 978-1-4673-4432-6. DOI: 10.1109/UCC.2012.54.

[28] Mohamed Sellami, Sami Yangui, Mohamed Mohamed and Samir Tata.
“PaaS-Independent Provisioning and Management of Applications in the
Cloud”. In: CLOUD 2013: IEEE 6th International Conference on Cloud
Computing. Ed. by Lisa O’Conner. IEEE Computer Society, 2013, pp. 693–
700. ISBN: 978-0-7695-5028-2. DOI: 10.1109/CLOUD.2013.105.

[29] Daniel Seybold. “Design und Implementierung eines skalierenden Database-
as-a-Service Systems (in German)”. Mastersthesis VS-M05-2014. Insti-
tute for Distributed Systems, University of Ulm, Apr. 2014.

[30] Jin Shao, Hao Wei, Qianxiang Wang and Hong Mei. “A Runtime Model
Based Monitoring Approach for Cloud”. In: CLOUD 2010: IEEE 3rd In-
ternational Conference on Cloud Computing. IEEE Computer Society,
2010, pp. 313–320. ISBN: 978-1-4244-8207-8. DOI: 10.1109/CLOUD.
2010.31.

[31] Clemens Szyperski. Component software: beyond object-oriented pro-
gramming (2nd edition). Pearson Education, 2011. ISBN: 978-0321753021.

D2.1.2 CloudML Implementation Documentation (First version) Page 50 of 63

http://dx.doi.org/10.1016/j.jlap.2009.10.003
http://dx.doi.org/10.1109/UCC.2012.54
http://dx.doi.org/10.1109/CLOUD.2013.105
http://dx.doi.org/10.1109/CLOUD.2010.31
http://dx.doi.org/10.1109/CLOUD.2010.31

A XMI Serialisation of the SENSAPP Example

Listing A.1: XMI Serialisation of the SensApp Example
<?xml version="1.0" encoding="UTF-8"?>
<net.cloudml:CloudMLModel xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:net.cloudml="http://cloudml.net" name="SensAppModel">

<providers name="Beanstalk" credentials="./credentials_beanstalk"/>
<providers name="FlexiScale" credentials="./credentials_flexiscale"/

>
<providers name="AmazonEC2" credentials="./credentials_aws"/>
<components xsi:type="net.cloudml:ExternalComponent" name="

BeanstalkContainer" provider="Beanstalk" location="eu">
<providedContainmentPorts name="webServer" owner="

BeanstalkContainer" offers="language">
<properties name="language" value="Java"/>

</providedContainmentPorts>
</components>
<components xsi:type="net.cloudml:InternalComponent" name="SensApp">

<resources name="sensAppWar" downloadCommand="wget -P ~ http://
github.com/downloads/SINTEF-9012/sensapp/sensapp.war; wget -P ~
http://ec2-54-228-116-115.eu-west-1.compute.amazonaws.com/

scripts/linux/ubuntu/sensapp/sensapp.sh" installCommand="cd ~;
sudo bash sensapp.sh"/>

<providedCommunicationPorts name="RESTProvided" component="SensApp
" portNumber="8080"/>

<requiredCommunicationPorts name="mongoDBRequired" component="
SensApp" isMandatory="true"/>

<requiredContainmentPort name="servletContainerRequired" owner="
SensApp"/>

</components>
<components xsi:type="net.cloudml:InternalComponent" name="

SensAppAdmin">
<resources name="sensAppAdminWar" downloadCommand="wget -P ~ http:

//ec2-54-228-116-115.eu-west-1.compute.amazonaws.com/resources/
sensappAdmin/SensAppGUI.tar; wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/sensappAdmin/startsensappgui.sh ; wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/sensappAdmin/sensappgui.sh ; wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/resources/
sensappAdmin/localTopology.json; wget http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/resources/
sources.list; sudo mv sources.list /etc/apt/sources.list"
installCommand="cd ~; sudo bash sensappgui.sh" startCommand="cd
~; sudo bash startsensappgui.sh"/>

<requiredCommunicationPorts name="RESTRequired" component="
SensAppAdmin" portNumber="8080"/>

<requiredContainmentPort name="beanstalkRequired" owner="SensApp"/
>

</components>
<components xsi:type="net.cloudml:InternalComponent" name="JettySC">

<resources name="jettyBin" downloadCommand="wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/jetty/jetty.sh" installCommand="cd ~; sudo bash jetty.sh
"/>

<providedContainmentPorts name="servletContainerProvided" owner="
JettySC"/>

D2.1.2 CloudML Implementation Documentation (First version) Page 51 of 63

<requiredContainmentPort name="slRequired" owner="JettySC"/>
</components>
<components xsi:type="net.cloudml:InternalComponent" name="MongoDB">

<resources name="mongoDBBin" downloadCommand="wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/mongoDB/mongoDB.sh" installCommand="cd ~; sudo bash
mongoDB.sh"/>

<providedCommunicationPorts name="mongoDB" component="MongoDB"/>
<requiredContainmentPort name="mlRequired" owner="MongoDB"/>

</components>
<components xsi:type="net.cloudml:VM" name="ML" provider="AmazonEC2"

location="eu-west-1b" minRam="4096" minCores="2" maxStorage="50"
os="ubuntu" securityGroup="SensApp" sshKey="cloudml" privateKey=

"/Users/aronnax/SINTEF/cloudml/bin/cloudml.pem" groupName="
sensapp">

<providedContainmentPorts name="mlProvided" owner="ML"/>
</components>
<components xsi:type="net.cloudml:VM" name="SL" provider="FlexiScale

" location="no" minRam="1024" minCores="1" maxStorage="50" os="
ubuntu" is64os="false" imageId="Ubuntu-SINTEF" securityGroup="
SensApp" sshKey="cloudml" privateKey="./cloudml.pem" groupName="
SensApp">

<providedContainmentPorts name="slProvided" owner="SL"/>
</components>
<communications name="SensAppMongoDB" requiredCommunicationPort="

mongoDBRequired" providedCommunicationPort="mongoDB"/>
<communications name="SensAppAdminSensApp" requiredCommunicationPort

="RESTRequired" providedCommunicationPort="RESTProvided">
<resources name="client" downloadCommand="wget -P ~ http://ec2

-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/sensappAdmin/configuresensappgui.sh" configureCommand="
cd ~; sudo bash configuresensappgui.sh"/>

</communications>
<clouds name="Flexiant"/>
<clouds name="AWS-EC2"/>
<componentInstances xsi:type="net.cloudml:InternalComponentInstance"

name="SensApp1" type="SensApp">
<providedCommunicationPortInstances name="RESTProvided1" type="

RESTProvided" componentInstance="SensApp1"/>
<requiredCommunicationPortInstances name="mongoDBRequired1" type="

mongoDBRequired" componentInstance="SensApp1"/>
<requiredContainmentPortInstance name="servletContainerRequired1"

owner="SensApp1" type="servletContainerRequired"/>
</componentInstances>
<componentInstances xsi:type="net.cloudml:InternalComponentInstance"

name="SensAppAdmin1" type="SensAppAdmin">
<requiredCommunicationPortInstances name="RESTRequired1" type="

RESTRequired" componentInstance="SensAppAdmin1"/>
<requiredContainmentPortInstance name="beanstalkRequired1" owner="

SensAppAdmin1" type="beanstalkRequired"/>
</componentInstances>
<componentInstances xsi:type="net.cloudml:InternalComponentInstance"

name="JettySC1" type="JettySC">
<providedContainmentPortInstances name="servletContainerProvided1"

owner="JettySC1" type="servletContainerProvided"/>
<requiredContainmentPortInstance name="slRequired1" owner="

JettySC1" type="slRequired"/>
</componentInstances>
<componentInstances xsi:type="net.cloudml:InternalComponentInstance"

name="MongoDB1" type="MongoDB">

D2.1.2 CloudML Implementation Documentation (First version) Page 52 of 63

<providedCommunicationPortInstances name="mongoDB1" type="mongoDB"
componentInstance="MongoDB1"/>

<requiredContainmentPortInstance name="mlRequired1" owner="
MongoDB1" type="mlRequired"/>

</componentInstances>
<componentInstances xsi:type="net.cloudml:ExternalComponentInstance"

name="beanstalkContainer1" type="BeanstalkContainer">
<providedContainmentPortInstances name="webServer1" owner="

beanstalkContainer1" type="webServer"/>
</componentInstances>
<communicationInstances name="sensAppMongoDB1" type="SensAppMongoDB"

requiredCommunicationPortInstance="mongoDBRequired1"
providedCommunicationPortInstance="mongoDB1"/>

<communicationInstances name="sensAppAdminSensApp1" type="
SensAppAdminSensApp" requiredCommunicationPortInstance="
RESTRequired1" providedCommunicationPortInstance="RESTProvided1">

<resources name="client" downloadCommand="wget -P ~ http://ec2
-54-228-116-115.eu-west-1.compute.amazonaws.com/scripts/linux/
ubuntu/sensappAdmin/configuresensappgui.sh" configureCommand="
sudo bash configuresensappgui.sh"/>

</communicationInstances>
<containmentInstances name="sensApp2SC1"

providedContainmentPortInstance="servletContainerProvided1"
requiredContainmentPortInstance="servletContainerRequired1" type=
"sensApp2SC"/>

<containmentInstances name="jetty2SL1"
providedContainmentPortInstance="slProvided1"
requiredContainmentPortInstance="slRequired1" type="jetty2SL"/>

<containmentInstances name="sensAppAdmin2Beanstalk1"
providedContainmentPortInstance="webServer1"
requiredContainmentPortInstance="beanstalkRequired1" type="
sensAppAdmin2Beanstalk"/>

<containmentInstances name="mongoDB2ML1"
providedContainmentPortInstance="mlProvided1"
requiredContainmentPortInstance="mlRequired1" type="mongoDB2ML"/>

<containments name="sensApp2SC" providedContainmentPort="
servletContainerProvided" requiredContainmentPort="
servletContainerRequired"/>

<containments name="jetty2SL" providedContainmentPort="slProvided"
requiredContainmentPort="slRequired">

<resources name="configureJetty" downloadCommand="wget -P ~ http:
//cloudml.org/scripts/linux/ubuntu/sensappAdmin/configure_jetty
.sh" configureCommand="sudo bash configure_jetty.sh"/>

</containments>
<containments name="sensAppAdmin2Beanstalk" providedContainmentPort=

"webServer" requiredContainmentPort="beanstalkRequired"/>
<containments name="mongoDB2ML" providedContainmentPort="mlProvided"

requiredContainmentPort="mlRequired"/>
<vmInstances name="ml1" type="ML" publicAddress="">

<providedContainmentPortInstances name="mlProvided1" owner="ml1"
type="mlProvided"/>

</vmInstances>
<vmInstances name="sl1" type="SL" publicAddress="">

<providedContainmentPortInstances name="slProvided1" owner="sl1"
type="slProvided"/>

</vmInstances>
</net.cloudml:CloudMLModel>

D2.1.2 CloudML Implementation Documentation (First version) Page 53 of 63

B Cloud Ontology Diagram

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Database

Language

Framework

Countable
Concept

Tomcat

Jetty

GlassFish

Tomcat 6.0

Tomcat 7.0

Jetty 6.1

GlassFish
3.1

SQL

NoSQL

MySQL

PostgreSQL

MariaDB

MongoDB

CouchDB

Java

Ruby

PHP

Resource

Countable
Concept

MongoDB
2.2

MongoDB
2.2.X

MongoDB
2.4.X

Database Size Quantifiable
Concept

Cloudant

Database Size

MongoDB
2.0.2

IronCache

RedisGreen

CouchDB
1.2Database Size

MongoHQ

MongoLab

MongoDB
2.2.X

MongoDB
2.4.X

MongoDB
2.0.2

Quantifiable
Concept

MariaDB
10

MariaDB
5.5

PostgreSQL
8.4

PostgreSQL
9.2

MySQL 5.5

Treasure
Data PG Backups ClearDB

MySQL Amazon RDS Windows
Azure SQL

SQL
Premium

SQL Web
and Business

DatabaseSize

Java 6

Java 7

Ruby 2.0.0

Python Python 2.7

Python
2.7.5

Python
3.3.2

PHP 5.3

PHP 5.4

Clojure Clojure
1.5.1

Tomcat
7.0.X

JavaScript

Scala

TomEE+

Spring

Node.js

Rails

Play

Play 1.2.3

Rails 3.X

Rails 4.X

Noje.js
0.4.7

Noje.js
0.6.17

Noje.js
0.6.20

Noje.js
0.84

Unit Frequency
Unit MHz

GHz

Stockage
Unit MB

GB

TB

Memory

CPU Cores

Bandwidth

Transfer
Rate Unit BitPerSecond

KBPerSecond

MBPerSecond

GBPerSecond

Storage

Cache

Search
Engine

Cache Cache
Service

IronCache

Cachely

MemCachier

MemCached

Search
Engine Web Solr

Flying
Sphinx

Bonsai Elastic
Search

Found Elastic
SearchThing

Quantifiable
Concept

Quantifiable
Concept

Provider

Provider Heroku

Google App
Engine

Windows
Azure

PostgreSQL
9.3

Heroku
Postgres 2.0

PostgreSQL

Legend

Abstract Concept

Concrete Concept

is a

uses

ElasticHosts

AmazonEC2

Virtual
Machine

OSUbuntu
Server

Virtual
Machine

OS

Windows
Server

Figure 31: Saloon Cloud Ontology Diagram

D2.1.2 CloudML Implementation Documentation (First version) Page 54 of 63

C Full Java Code of the SENSAPP Example

Listing C.1: Full SensApp Example Code
// initialise and activate a container
final IManagedContainer container = ContainerUtil.createContainer();
Net4jUtil.prepareContainer(container);
TCPUtil.prepareContainer(container);
CDONet4jUtil.prepareContainer(container);
container.activate();

// create a Net4j TCP connector
final IConnector connector = (IConnector) TCPUtil.getConnector(

container, "localhost:2036");

// create the session configuration
CDONet4jSessionConfiguration config = CDONet4jUtil.

createNet4jSessionConfiguration();
config.setConnector(connector);
config.setRepositoryName("CDORepositoryName");

// create the actual session with the repository
CDONet4jSession cdoSession = config.openNet4jSession();

// obtain a transaction object
CDOTransaction transaction = cdoSession.openTransaction();

// create a CDO resource object
CDOResource resource = transaction.getOrCreateResource("/

sensAppResource");

// complete mapping of the SensApp example
CloudMLModel model = CloudmlFactory.eINSTANCE.createCloudMLModel();
model.setName("SensAppCPSM");

Provider beanstalk = CloudmlFactory.eINSTANCE.createProvider();
beanstalk.setName("Beanstalk");
beanstalk.setCredentials("./credentials_beanstalk");

Provider flexiScale = CloudmlFactory.eINSTANCE.createProvider();
flexiScale.setName("FlexiScale");
flexiScale.setCredentials("./credentials_flexiscale");

Provider amazonEC2 = CloudmlFactory.eINSTANCE.createProvider();
amazonEC2.setName("AWS-EC2");
amazonEC2.setCredentials("./credentials_amazon");

ExternalComponent beanstalkContainer = CloudmlFactory.eINSTANCE.
createExternalComponent();

beanstalkContainer.setName("BeanstalkContainer");
beanstalkContainer.setProvider(beanstalk);
beanstalkContainer.setLocation("eu");

ProvidedContainmentPort webServer = CloudmlFactory.eINSTANCE.
createProvidedContainmentPort();

webServer.setName("webServer");
webServer.setOwner(beanstalkContainer);

D2.1.2 CloudML Implementation Documentation (First version) Page 55 of 63

Property webServerLanguage = CloudmlFactory.eINSTANCE.createProperty()
;

webServerLanguage.setName("language");
webServerLanguage.setValue("Java");

webServer.getProperties().add(webServerLanguage);
beanstalkContainer.getProvidedContainmentPorts().add(webServer);

InternalComponent sensApp = CloudmlFactory.eINSTANCE.
createInternalComponent();

sensApp.setName("SensApp");

Resource sensAppWar = CloudmlFactory.eINSTANCE.createResource();
sensAppWar.setDownloadCommand(""

+ "wget -P ~ http://github.com/downloads/SINTEF-9012/sensapp/
sensapp.war; "

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/scripts/linux/ubuntu/sensapp/sensapp.sh"

);
sensAppWar.setInstallCommand("cd ~; sudo bash sensapp.sh");
sensAppWar.setName("sensAppWar");

ProvidedCommunicationPort restProvided = CloudmlFactory.eINSTANCE.
createProvidedCommunicationPort();

restProvided.setName("RESTProvided");
restProvided.setIsLocal(false);
restProvided.setPortNumber(8080);
restProvided.setComponent(sensApp);

RequiredCommunicationPort mongoDBRequired = CloudmlFactory.eINSTANCE.
createRequiredCommunicationPort();

mongoDBRequired.setName("mongoDBRequired");
mongoDBRequired.setIsLocal(true);
mongoDBRequired.setIsMandatory(true);
mongoDBRequired.setPortNumber(0);
mongoDBRequired.setComponent(sensApp);

RequiredContainmentPort servletContainerRequired = CloudmlFactory.
eINSTANCE.createRequiredContainmentPort();

servletContainerRequired.setName("servletContainerRequired");
servletContainerRequired.setOwner(sensApp);

sensApp.getResources().add(sensAppWar);
sensApp.getProvidedCommunicationPorts().add(restProvided);
sensApp.getRequiredCommunicationPorts().add(mongoDBRequired);
sensApp.setRequiredContainmentPort(servletContainerRequired);

InternalComponent sensAppAdmin = CloudmlFactory.eINSTANCE.
createInternalComponent();

sensAppAdmin.setName("SensAppAdmin");

Resource sensAppAdminWar = CloudmlFactory.eINSTANCE.createResource();
sensAppAdminWar.setName("sensAppAdminWar");
sensAppAdminWar.setDownloadCommand(""

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/resources/sensappAdmin/SensAppGUI.tar; "

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/scripts/linux/ubuntu/sensappAdmin/startsensappgui.sh ; "

D2.1.2 CloudML Implementation Documentation (First version) Page 56 of 63

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/scripts/linux/ubuntu/sensappAdmin/sensappgui.sh ; "

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/resources/sensappAdmin/localTopology.json; "

+ "wget http://ec2-54-228-116-115.eu-west-1.compute.amazonaws.com/
resources/sources.list; "

+ "sudo mv sources.list /etc/apt/sources.list"
);

sensAppAdminWar.setInstallCommand("cd ~; sudo bash sensappgui.sh");
sensAppAdminWar.setStartCommand("cd ~; sudo bash sensappgui.sh");

RequiredCommunicationPort restRequired = CloudmlFactory.eINSTANCE.
createRequiredCommunicationPort();

restRequired.setName("RESTRequired");
restRequired.setIsLocal(false);
restRequired.setIsMandatory(false);
restRequired.setPortNumber(8080);
restRequired.setComponent(sensAppAdmin);

RequiredContainmentPort beanstalkRequired = CloudmlFactory.eINSTANCE.
createRequiredContainmentPort();

beanstalkRequired.setName("beanstalkRequired");
beanstalkRequired.setOwner(sensAppAdmin);

sensAppAdmin.getResources().add(sensAppAdminWar);
sensAppAdmin.getRequiredCommunicationPorts().add(restRequired);
sensAppAdmin.setRequiredContainmentPort(beanstalkRequired);

InternalComponent jettySC = CloudmlFactory.eINSTANCE.
createInternalComponent();

jettySC.setName("JettySC");

Resource jettyBin = CloudmlFactory.eINSTANCE.createResource();
jettyBin.setName("jettyBin");
jettyBin.setDownloadCommand("wget -P ~ http://ec2-54-228-116-115.eu-

west-1.compute.amazonaws.com/scripts/linux/ubuntu/jetty/jetty.sh");
jettyBin.setInstallCommand("cd ~; sudo bash jetty.sh");

ProvidedContainmentPort servletContainerProvided = CloudmlFactory.
eINSTANCE.createProvidedContainmentPort();

servletContainerProvided.setName("servletContainerProvided");
servletContainerProvided.setOwner(jettySC);

RequiredContainmentPort slRequired = CloudmlFactory.eINSTANCE.
createRequiredContainmentPort();

slRequired.setName("slRequired");
slRequired.setOwner(jettySC);

jettySC.getResources().add(jettyBin);
jettySC.getProvidedContainmentPorts().add(servletContainerProvided);
jettySC.setRequiredContainmentPort(slRequired);

InternalComponent mongoDB = CloudmlFactory.eINSTANCE.
createInternalComponent();

mongoDB.setName("MongoDB");

Resource mongoDBBin = CloudmlFactory.eINSTANCE.createResource();
mongoDBBin.setName("mongoDBBin");

D2.1.2 CloudML Implementation Documentation (First version) Page 57 of 63

mongoDBBin.setDownloadCommand("wget -P ~ http://ec2-54-228-116-115.eu-
west-1.compute.amazonaws.com/scripts/linux/ubuntu/mongoDB/mongoDB.
sh");

mongoDBBin.setInstallCommand("cd ~; sudo bash mongoDB.sh");

ProvidedCommunicationPort mongoDBPP = CloudmlFactory.eINSTANCE.
createProvidedCommunicationPort();

mongoDBPP.setName("mongoDB");
mongoDBPP.setIsLocal(true);
mongoDBPP.setPortNumber(0);
mongoDBPP.setComponent(mongoDB);

RequiredContainmentPort mlRequired = CloudmlFactory.eINSTANCE.
createRequiredContainmentPort();

mlRequired.setName("mlRequired");
mlRequired.setOwner(mongoDB);

mongoDB.getResources().add(mongoDBBin);
mongoDB.getProvidedCommunicationPorts().add(mongoDBPP);
mongoDB.setRequiredContainmentPort(mlRequired);

VM ml = CloudmlFactory.eINSTANCE.createVM();
ml.setName("ML");
ml.setMinCores(4);
ml.setMaxCores(8);
ml.setMinRam(4096);
ml.setMaxRam(0);
ml.setMinStorage(50);
ml.setMaxStorage(100);
ml.setLocation("eu-west-1b");
ml.setOs("ubuntu");
ml.setSshKey("cloudml");
ml.setSecurityGroup("SensApp");
ml.setGroupName("sensapp");
ml.setPrivateKey("/Users/aronnax/SINTEF/cloudml/bin/cloudml.pem");
ml.setIs64os(true);
ml.setProvider(amazonEC2);

ProvidedContainmentPort mlProvided = CloudmlFactory.eINSTANCE.
createProvidedContainmentPort();

mlProvided.setName("mlProvided");
mlProvided.setOwner(ml);

ml.getProvidedContainmentPorts().add(mlProvided);

VM sl = CloudmlFactory.eINSTANCE.createVM();
sl.setName("SL");
sl.setMinCores(1);
sl.setMaxCores(0);
sl.setMinRam(1024);
sl.setMaxRam(0);
sl.setMinStorage(50);
sl.setMaxStorage(0);
sl.setLocation("no");
sl.setOs("ubuntu");
sl.setSshKey("cloudml");
sl.setSecurityGroup("SensApp");
sl.setGroupName("SensApp");
sl.setPrivateKey("./cloudml.pem");

D2.1.2 CloudML Implementation Documentation (First version) Page 58 of 63

sl.setImageId("Ubuntu-SINTEF");
sl.setIs64os(false);
sl.setProvider(flexiScale);

ProvidedContainmentPort slProvided = CloudmlFactory.eINSTANCE.
createProvidedContainmentPort();

slProvided.setName("slProvided");
slProvided.setOwner(sl);

sl.getProvidedContainmentPorts().add(slProvided);

Communication sensAppMongoDb = CloudmlFactory.eINSTANCE.
createCommunication();

sensAppMongoDb.setName("SensAppMongoDB");
sensAppMongoDb.setProvidedCommunicationPort(mongoDBPP);
sensAppMongoDb.setRequiredCommunicationPort(mongoDBRequired);

Communication sensAppAdminSensApp = CloudmlFactory.eINSTANCE.
createCommunication();

sensAppAdminSensApp.setName("SensAppAdminSensApp");
sensAppAdminSensApp.setProvidedCommunicationPort(restProvided);
sensAppAdminSensApp.setRequiredCommunicationPort(restRequired);

Containment sensApp2SC = CloudmlFactory.eINSTANCE.createContainment();
sensApp2SC.setName("sensApp2SC");
sensApp2SC.setProvidedContainmentPort(servletContainerProvided);
sensApp2SC.setRequiredContainmentPort(servletContainerRequired);

Containment jetty2Sl = CloudmlFactory.eINSTANCE.createContainment();
jetty2Sl.setName("jetty2SL");
jetty2Sl.setProvidedContainmentPort(slProvided);
jetty2Sl.setProvidedContainmentPort(slProvided);

Resource configureJetty = CloudmlFactory.eINSTANCE.createResource();
configureJetty.setName("configureJetty");
configureJetty.setConfigureCommand("sudo bash configure_jetty.sh");
configureJetty.setDownloadCommand("wget -P ~ http://cloudml.org/

scripts/linux/ubuntu/sensappAdmin/configure_jetty.sh");

jetty2Sl.getResources().add(configureJetty);

Containment sensAppAdmin2Beanstalk = CloudmlFactory.eINSTANCE.
createContainment();

sensAppAdmin2Beanstalk.setName("sensAppAdmin2Beanstalk");
sensAppAdmin2Beanstalk.setProvidedContainmentPort(webServer);
sensAppAdmin2Beanstalk.setRequiredContainmentPort(beanstalkRequired);

Containment mongoDb2Ml = CloudmlFactory.eINSTANCE.createContainment();
mongoDb2Ml.setName("mongoDB2ML");
mongoDb2Ml.setProvidedContainmentPort(mlProvided);
mongoDb2Ml.setRequiredContainmentPort(mlRequired);

Resource client = CloudmlFactory.eINSTANCE.createResource();
client.setName("client");
client.setDownloadCommand(""

+ "wget -P ~ http://ec2-54-228-116-115.eu-west-1.compute.amazonaws
.com/scripts/linux/ubuntu/sensappAdmin/configuresensappgui.sh"

);
client.setConfigureCommand("cd ~; sudo bash configuresensappgui.sh");

D2.1.2 CloudML Implementation Documentation (First version) Page 59 of 63

sensAppAdminSensApp.setRequiredPortResource(client);

sensAppAdminSensApp.getResources().add(client);

InternalComponentInstance sensApp1 = CloudmlFactory.eINSTANCE.
createInternalComponentInstance();

sensApp1.setName("sensApp1");
sensApp1.setType(sensApp);

ProvidedCommunicationPortInstance restProvided1 = CloudmlFactory.
eINSTANCE.createProvidedCommunicationPortInstance();

restProvided1.setName("RESTProvided1");
restProvided1.setType(restProvided);
restProvided1.setComponentInstance(sensApp1);

RequiredCommunicationPortInstance mongoDbRequired1 = CloudmlFactory.
eINSTANCE.createRequiredCommunicationPortInstance();

mongoDbRequired1.setName("mongoDBRequired1");
mongoDbRequired1.setType(mongoDBRequired);
mongoDbRequired1.setComponentInstance(sensApp1);

RequiredContainmentPortInstance servletContainerRequired1 =
CloudmlFactory.eINSTANCE.createRequiredContainmentPortInstance();

servletContainerRequired1.setName("servletContainerRequired1");
servletContainerRequired1.setOwner(sensApp1);
servletContainerRequired1.setType(servletContainerRequired);

sensApp1.getProvidedCommunicationPortInstances().add(restProvided1);
sensApp1.getRequiredCommunicationPortInstances().add(mongoDbRequired1)

;
sensApp1.setRequiredContainmentPortInstance(servletContainerRequired1)

;

InternalComponentInstance sensAppAdmin1 = CloudmlFactory.eINSTANCE.
createInternalComponentInstance();

sensAppAdmin1.setName("sensAppAdmin1");
sensAppAdmin1.setType(sensAppAdmin);

RequiredCommunicationPortInstance restRequired1 = CloudmlFactory.
eINSTANCE.createRequiredCommunicationPortInstance();

restRequired1.setName("RESTRequired");
restRequired1.setType(restRequired);
restRequired1.setComponentInstance(sensAppAdmin1);

RequiredContainmentPortInstance beanstalkRequired1 = CloudmlFactory.
eINSTANCE.createRequiredContainmentPortInstance();

beanstalkRequired1.setName("beanstalkRequired1");
beanstalkRequired1.setOwner(sensAppAdmin1);
beanstalkRequired1.setType(beanstalkRequired);

sensAppAdmin1.getRequiredCommunicationPortInstances().add(
restRequired1);

sensAppAdmin1.setRequiredContainmentPortInstance(beanstalkRequired1);

InternalComponentInstance jettySc1 = CloudmlFactory.eINSTANCE.
createInternalComponentInstance();

jettySc1.setName("jettySC1");
jettySc1.setType(jettySC);

D2.1.2 CloudML Implementation Documentation (First version) Page 60 of 63

ProvidedContainmentPortInstance servletContainerProvided1 =
CloudmlFactory.eINSTANCE.createProvidedContainmentPortInstance();

servletContainerProvided1.setName("servletContainerProvided1");
servletContainerProvided1.setOwner(jettySc1);
servletContainerProvided1.setType(servletContainerProvided);

RequiredContainmentPortInstance slRequired1 = CloudmlFactory.eINSTANCE
.createRequiredContainmentPortInstance();

slRequired1.setName("slRequired1");
slRequired1.setOwner(jettySc1);
slRequired1.setType(slRequired);

jettySc1.getProvidedContainmentPortInstances().add(
servletContainerProvided1);

jettySc1.setRequiredContainmentPortInstance(slRequired1);

InternalComponentInstance mongoDb1 = CloudmlFactory.eINSTANCE.
createInternalComponentInstance();

mongoDb1.setName("MongoDB1");
mongoDb1.setType(mongoDB);

ProvidedCommunicationPortInstance mongoDb1PPI = CloudmlFactory.
eINSTANCE.createProvidedCommunicationPortInstance();

mongoDb1PPI.setName("mongoDB1");
mongoDb1PPI.setType(mongoDBPP);
mongoDb1PPI.setComponentInstance(mongoDb1);

RequiredContainmentPortInstance mlRequired1 = CloudmlFactory.eINSTANCE
.createRequiredContainmentPortInstance();

mlRequired1.setName("mlRequired1");
mlRequired1.setOwner(mongoDb1);
mlRequired1.setType(mlRequired);

mongoDb1.getProvidedCommunicationPortInstances().add(mongoDb1PPI);
mongoDb1.setRequiredContainmentPortInstance(mlRequired1);

ExternalComponentInstance beanstalkContainer1 = CloudmlFactory.
eINSTANCE.createExternalComponentInstance();

beanstalkContainer1.setName("beanstalkContainer1");
beanstalkContainer1.setType(beanstalkContainer);

ProvidedContainmentPortInstance webServer1 = CloudmlFactory.eINSTANCE.
createProvidedContainmentPortInstance();

webServer1.setName("webServer1");
webServer1.setOwner(beanstalkContainer1);
webServer1.setType(webServer);

beanstalkContainer1.getProvidedContainmentPortInstances().add(
webServer1);

VMInstance sl1 = CloudmlFactory.eINSTANCE.createVMInstance();
sl1.setName("PaaSage-SL1");
sl1.setType(sl);

ProvidedContainmentPortInstance slProvided1 = CloudmlFactory.eINSTANCE
.createProvidedContainmentPortInstance();

slProvided1.setName("slProvided1");
slProvided1.setOwner(sl1);
slProvided1.setType(slProvided);

D2.1.2 CloudML Implementation Documentation (First version) Page 61 of 63

sl1.getProvidedContainmentPortInstances().add(slProvided1);

VMInstance ml1 = CloudmlFactory.eINSTANCE.createVMInstance();
ml1.setName("PaaSage-ML1");
ml1.setType(ml);

ProvidedContainmentPortInstance mlProvided1 = CloudmlFactory.eINSTANCE
.createProvidedContainmentPortInstance();

mlProvided1.setName("mlProvided1");
mlProvided1.setOwner(ml1);
mlProvided1.setType(mlProvided);

ml1.getProvidedContainmentPortInstances().add(mlProvided1);

Cloud flexiant = CloudmlFactory.eINSTANCE.createCloud();
flexiant.setName("Flexiant");
flexiant.getExternalComponents().add(sl);

Cloud aws_ec2 = CloudmlFactory.eINSTANCE.createCloud();
aws_ec2.setName("AWS-EC2");
aws_ec2.getExternalComponents().add(ml);

CommunicationInstance sensAppMongoDb1 = CloudmlFactory.eINSTANCE.
createCommunicationInstance();

sensAppMongoDb1.setName("sensAppMongoDb1");
sensAppMongoDb1.setType(sensAppMongoDb);
sensAppMongoDb1.setProvidedCommunicationPortInstance(mongoDb1PPI);
sensAppMongoDb1.setRequiredCommunicationPortInstance(mongoDbRequired1)

;

CommunicationInstance sensAppAdminSensApp1 = CloudmlFactory.eINSTANCE.
createCommunicationInstance();

sensAppAdminSensApp1.setName("sensAppAdminSensApp1");
sensAppAdminSensApp1.setType(sensAppAdminSensApp);
sensAppAdminSensApp1.setProvidedCommunicationPortInstance(

restProvided1);
sensAppAdminSensApp1.setRequiredCommunicationPortInstance(

restRequired1);

ContainmentInstance sensApp2SC1 = CloudmlFactory.eINSTANCE.
createContainmentInstance();

sensApp2SC1.setName("sensApp2SC1");
sensApp2SC1.setProvidedContainmentPortInstance(

servletContainerProvided1);
sensApp2SC1.setRequiredContainmentPortInstance(

servletContainerRequired1);

ContainmentInstance jetty2SL1 = CloudmlFactory.eINSTANCE.
createContainmentInstance();

jetty2SL1.setName("jetty2SL1");
jetty2SL1.setProvidedContainmentPortInstance(slProvided1);
jetty2SL1.setRequiredContainmentPortInstance(slRequired1);

ContainmentInstance sensAppAdmin2Beanstalk1 = CloudmlFactory.eINSTANCE
.createContainmentInstance();

sensAppAdmin2Beanstalk1.setName("sensAppAdmin2Beanstalk1");
sensAppAdmin2Beanstalk1.setProvidedContainmentPortInstance(webServer1)

;

D2.1.2 CloudML Implementation Documentation (First version) Page 62 of 63

sensAppAdmin2Beanstalk1.setRequiredContainmentPortInstance(
beanstalkRequired1);

ContainmentInstance mongoDb2Ml1 = CloudmlFactory.eINSTANCE.
createContainmentInstance();

mongoDb2Ml1.setName("mongoDB2ML1");
mongoDb2Ml1.setProvidedContainmentPortInstance(mlProvided1);
mongoDb2Ml1.setRequiredContainmentPortInstance(mlRequired1);

model.getProviders().add(beanstalk);
model.getProviders().add(flexiScale);
model.getProviders().add(amazonEC2);

model.getComponents().add(beanstalkContainer);
model.getComponents().add(sensApp);
model.getComponents().add(sensAppAdmin);
model.getComponents().add(jettySC);
model.getComponents().add(mongoDB);
model.getComponents().add(sl);
model.getComponents().add(ml);

model.getCommunications().add(sensAppMongoDb);
model.getCommunications().add(sensAppAdminSensApp);

model.getClouds().add(flexiant);
model.getClouds().add(aws_ec2);

model.getVmInstances().add(sl1);
model.getVmInstances().add(ml1);

model.getComponentInstances().add(sensApp1);
model.getComponentInstances().add(sensAppAdmin1);
model.getComponentInstances().add(jettySc1);
model.getComponentInstances().add(mongoDb1);
model.getComponentInstances().add(beanstalkContainer1);

model.getCommunicationInstances().add(sensAppMongoDb1);
model.getCommunicationInstances().add(sensAppAdminSensApp1);

model.getContainments().add(sensApp2SC);
model.getContainments().add(jetty2Sl);
model.getContainments().add(sensAppAdmin2Beanstalk);
model.getContainments().add(mongoDb2Ml);

model.getContainmentInstances().add(sensApp2SC1);
model.getContainmentInstances().add(jetty2SL1);
model.getContainmentInstances().add(sensAppAdmin2Beanstalk1);
model.getContainmentInstances().add(mongoDb2Ml1);

resource.getContents().add(model);

try {
info=transaction.commit();
System.out.println(info);

} catch (CommitException e) {

e.printStackTrace();
}

D2.1.2 CloudML Implementation Documentation (First version) Page 63 of 63

	paasage_d2.1.2_cover
	paasage_d2.1.2
	Introduction
	CAMEL
	EMF
	CDO

	CloudML
	Components
	Communications
	Containments
	Component, Communication, and Containment instances

	Saloon
	Feature
	Ontology
	Mapping
	Type

	WS-Agreement
	Agreements

	Scalability Rules Language
	Events
	Scheduling and Conditions
	Patterns and Metrics
	Actions
	Examples

	Java APIs and CDO
	Metadata Database
	Related Work
	Conclusions and Future Work
	References
	XMI Serialisation of the SensApp Example
	Cloud Ontology Diagram
	Full Java Code of the SensApp Example

